V-Band Channel Modeling, Throughput Measurements, and Coverage Prediction for Indoor Residential Environments
Abstract
:1. Introduction
1.1. Background and Related Work
1.1.1. Channel Models
1.1.2. Network Performance Simulations
1.1.3. IEEE 802.11ad Network Performance, Transceivers and Radios
1.2. Contributions
2. Measurement Methodology
2.1. Measurement Equipment
2.1.1. V-Band Channel Sounder
2.1.2. Terragraph Platform
2.2. Measurement Setup
3. Coverage Prediction Tool
3.1. Ray-Launching Algorithm
3.2. Throughput Estimation
3.3. Validation
3.4. Simulation Settings
4. Results and Discussion
4.1. Angular Path Loss
4.2. Path Loss, Packet Error Rate, and Throughput Estimation Measurements Using TG Platform
4.3. Coverage Prediction via Ray-Tracing
4.3.1. Line-of-Sight
4.3.2. Non-Line-of-Sight Link NLOS1
4.3.3. Non-Line-of-Sight Link Nlos2
4.3.4. Human Body Shadowing
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3GPP | Third Generation Partnership Project |
5G | Fifth generation |
AoA | Angle of arrival |
AoD | Angle of departure |
DANL | Displayed average noise level |
EIRP | Effective isotropically radiated power |
EM | Electromagnetic |
FSPL | Free space path loss |
HPBW | Half power beam width |
IEEE | Institute of Electrical and Electronics Engineers |
IF | Intermediate frequency |
ISM | Industrial, scientific, and medical |
ITU | International Telecommunication Union |
KED | Knife-edge diffraction |
LOS | Line-of-sight |
MAC | Medium Access Control |
MCS | Modulation and coding scheme |
MDPI | Multidisciplinary Digital Publishing Institute |
MIMO | Multiple-Input Multiple-Output |
MoM | Method of moments |
MPC | Multipath components |
NLOS | Non-line-of-sight |
PER | Packet error rate |
PHY | physical layer |
PL | Path loss |
PO | Physical optics |
RF | Radio frequency |
RSSI | Received signal strength information |
RX | Receiving |
RMS | Root mean squared |
SNR | Signal to noise ratio |
TCP | Transmission Control Protocol |
TG | Terragraph |
TX | Transmitting |
UTD | Uniform theory of diffraction |
References
- IEEE 802.11ad-2012; IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems—Local and Metropolitan Area Networks—Specific Requirements-Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 3: Enhancements for Very High Throughput in the 60 GHz Band. IEEE Computer Society: Washington, DC, USA, 2012.
- IEEE 802.11ay-2021; IEEE Standard for Information Technology—Telecommunications and Information Exchange between Systems Local and Metropolitan Area Networks—Specific Requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 2: Enhanced Throughput for Operation in License-exempt Bands above 45 GHz. IEEE Computer Society: Washington, DC, USA, 2021.
- Maltsev, A.; Pudeyev, A.; Lomayev, A.; Bolotin, I. Channel modeling in the next generation mmWave Wi-Fi: IEEE 802.11ay standard. In Proceedings of the European Wireless 2016 22th European Wireless Conference, Oulu, Finland, 18–20 May 2016; pp. 1–8. [Google Scholar]
- ITU-R. Multiple Gigabit Wireless Systems in Frequencies around 60 GHz; Technical Report, ITU-R M.2003-2; ITU-R: Geneva, Switzerland, 2018. [Google Scholar]
- Aslam, M.Z.; Corre, Y.; Belschner, J.; Arockiaraj, G.S.; Jäger, M. Analysis of 60-GHz In-street Backhaul Channel Measurements and LiDAR Ray-based Simulations. In Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Du, J.; Chizhik, D.; Feick, R.; Castro, G.; Rodríguez, M.; Valenzuela, R.A. Suburban Residential Building Penetration Loss at 28 GHz for Fixed Wireless Access. IEEE Wirel. Commun. Lett. 2018, 7, 890–893. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Li, S.; Wang, Q.; Wang, M.; Sun, S.; Hong, W. Channel Measurements, Modeling, Simulation and Validation at 32 GHz in Outdoor Microcells for 5G Radio Systems. IEEE Access 2017, 5, 1062–1072. [Google Scholar] [CrossRef]
- 3GPP. Study on Channel Model for Frequencies from 0.5 to 100 GHz. 2019. Available online: https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3173 (accessed on 30 December 2021).
- Salhi, M.A.; Kleine-Ostmann, T.; Schrader, T. Propagation Channel Measurements in the mm- and Sub-mm Wave Range for Different Indoor Communication Scenarios. J. Infrared Millim. Terahertz Waves 2021, 42, 357–370. [Google Scholar] [CrossRef]
- Kibilda, J.; MacKenzie, A.B.; Abdel-Rahman, M.J.; Yoo, S.K.; Giordano, L.G.; Cotton, S.L.; Marchetti, N.; Saad, W.; Scanlon, W.G.; Garcia-Rodriguez, A.; et al. Indoor Millimeter-Wave Systems: Design and Performance Evaluation. Proc. IEEE 2020, 108, 923–944. [Google Scholar] [CrossRef]
- Raghavan, V.; Partyka, A.; Akhoondzadeh-Asl, L.; Tassoudji, M.A.; Koymen, O.H.; Sanelli, J. Millimeter Wave Channel Measurements and Implications for PHY Layer Design. IEEE Trans. Antennas Propag. 2017, 65, 6521–6533. [Google Scholar] [CrossRef] [Green Version]
- De Beelde, B.; Tanghe, E.; Yusuf, M.; Plets, D.; Joseph, W. Radio Channel Modelling in a Ship Hull: Path Loss at 868 MHz, 2.4 GHz, 5.25 GHz and 60 GHz. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 597–601. [Google Scholar] [CrossRef]
- Kyro, M.; Haneda, K.; Simola, J.; Nakai, K.; Takizawa, K.i.; Hagiwara, H.; Vainikainen, P. Measurement Based Path Loss and Delay Spread Modeling in Hospital Environments at 60 GHz. IEEE Trans. Wirel. Commun. 2011, 10, 2423–2427. [Google Scholar] [CrossRef]
- Davies, R.; Bensebti, M.; Beach, M.; McGeehan, J. Wireless propagation measurements in indoor multipath environments at 1.7 GHz and 60 GHz for small cell systems. In Proceedings of the 41st IEEE Vehicular Technology Conference, St. Louis, MO, USA, 19–22 May 1991; pp. 589–593. [Google Scholar] [CrossRef] [Green Version]
- Dupleich, D.; Fuschini, F.; Mueller, R.; Vitucci, E.; Schneider, C.; Degli Esposti, V.; Thomä, R. Directional characterization of the 60 GHz indoor-office channel. In Proceedings of the 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), Beijing, China, 16–23 August 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Maltsev, A.; Maslennikov, R.; Sevastyanov, A.; Khoryaev, A.; Lomayev, A. Experimental investigations of 60 GHz WLAN systems in office environment. IEEE J. Sel. Areas Commun. 2009, 27, 1488–1499. [Google Scholar] [CrossRef]
- Maltsev, A.; Maslennikov, R.; Sevastyanov, A.; Lomayev, A.; Khoryaev, A. Statistical channel model for 60 GHz WLAN systems in conference room environment. In Proceedings of the Fourth European Conference on Antennas and Propagation, Barcelona, Spain, 12–16 April 2010; pp. 1–5. [Google Scholar]
- Choi, M.S.; Grosskopf; Rohde. Statistical Characteristics of 60 GHz Wideband Indoor Propagation Channel. In Proceedings of the 2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications, Berlin, Germany, 11–14 September 2005; Volume 1, pp. 599–603. [Google Scholar] [CrossRef]
- Hao, X.; Kukshya, V.; Rappaport, T.S. Spatial and temporal characteristics of 60-GHz indoor channels. IEEE J. Sel. Areas Commun. 2002, 20, 620–630. [Google Scholar] [CrossRef] [Green Version]
- Maccartney, G.R.; Rappaport, T.S.; Sun, S.; Deng, S. Indoor Office Wideband Millimeter-Wave Propagation Measurements and Channel Models at 28 and 73 GHz for Ultra-Dense 5G Wireless Networks. IEEE Access 2015, 3, 2388–2424. [Google Scholar] [CrossRef]
- Al-Saman, A.; Cheffena, M.; Elijah, O.; Al-Gumaei, Y.A.; Abdul Rahim, S.K.; Al-Hadhrami, T. Survey of Millimeter-Wave Propagation Measurements and Models in Indoor Environments. Electronics 2021, 10, 1653. [Google Scholar] [CrossRef]
- Yang, H.; Smulders; Herben. Indoor Channel Measurements and Analysis in the Frequency Bands 2 GHz and 60 GHz. In Proceedings of the 2005 IEEE 16th International Symposium on Personal, Indoor and Mobile Radio Communications, Berlin, Germany, 11–14 September 2005; Volume 1, pp. 579–583. [Google Scholar] [CrossRef]
- Yang, H.; Herben, M.; Smulders, P. Impact of antenna pattern and reflective environment on 60 GHz indoor radio channel characteristics. IEEE Antennas Wirel. Propag. Lett. 2005, 4, 300–303. [Google Scholar] [CrossRef]
- Wu, X.; Wang, C.; Sun, J.; Huang, J.; Feng, R.; Yang, Y.; Ge, X. 60-GHz Millimeter-Wave Channel Measurements and Modeling for Indoor Office Environments. IEEE Trans. Antennas Propag. 2017, 65, 1912–1924. [Google Scholar] [CrossRef]
- Khawaja, W.; Ozdemir, O.; Yapici, Y.; Erden, F.; Guvenc, I. Coverage Enhancement for NLOS mmWave Links Using Passive Reflectors. IEEE Open J. Commun. Soc. 2020, 1, 263–281. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Kim, H.; Choi, D.; Lee, Y.; Hong, W.; Park, J. 28 GHz propagation analysis for passive repeaters in NLOS channel environment. In Proceedings of the 2015 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, Portugal, 13–17 April 2015; pp. 1–4. [Google Scholar]
- Anjinappa, C.K.; Erden, F.; Güvenç, I. Base Station and Passive Reflectors Placement for Urban mmWave Networks. IEEE Trans. Veh. Technol. 2021, 70, 3525–3539. [Google Scholar] [CrossRef]
- Haneda, K.; Järveläinen, J.; Karttunen, A.; Kyrö, M.; Putkonen, J. A Statistical Spatio-Temporal Radio Channel Model for Large Indoor Environments at 60 and 70 GHz. IEEE Trans. Antennas Propag. 2015, 63, 2694–2704. [Google Scholar] [CrossRef]
- Kelner, J.M.; Ziółkowski, C.; Uljasz, B. Comparison of angular spread for 6 and 60 GHz based on 3GPP standard. In Proceedings of the 2018 22nd International Microwave and Radar Conference (MIKON), Poznan, Poland, 14–17 May 2018; pp. 286–290. [Google Scholar] [CrossRef] [Green Version]
- Pometcu, L.; D’Errico, R. Characterization of sub-THz and mmwave propagation channel for indoor scenarios. In Proceedings of the 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, 9–13 April 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Ju, S.; Xing, Y.; Kanhere, O.; Rappaport, T.S. Millimeter Wave and Sub-Terahertz Spatial Statistical Channel Model for an Indoor Office Building. IEEE J. Sel. Areas Commun. 2021, 39, 1561–1575. [Google Scholar] [CrossRef]
- De Beelde, B.; Tanghe, E.; Desset, C.; Bourdoux, A.; Plets, D.; Joseph, W. Office Room Channel Modeling and Object Attenuation at Sub-THz Frequencies. Electronics 2021, 10, 1725. [Google Scholar] [CrossRef]
- Collonge, S.; Zaharia, G.; El Zein, G. Influence of the human activity on the propagation characteristics of 60 GHz indoor channels. In Proceedings of the 7th IEEE Semiannual Vehicular Technology Conference, 2003. VTC 2003-Spring, Jeju, Korea, 22–25 April 2003; Volume 1, pp. 251–255. [Google Scholar] [CrossRef] [Green Version]
- Collonge, S.; Zaharia, G.; Zein, G. Influence of the human activity on wide-band characteristics of the 60 GHz indoor radio channel. IEEE Trans. Wirel. Commun. 2004, 3, 2396–2406. [Google Scholar] [CrossRef] [Green Version]
- Jacob, M.; Priebe, S.; Kürner, T.; Peter, M.; Wisotzki, M.; Felbecker, R.; Keusgen, W. Extension and validation of the IEEE 802.11ad 60 GHz human blockage model. In Proceedings of the 2013 7th European Conference on Antennas and Propagation (EuCAP), 2013, Gothenburg, Sweden, 8–12 April 2013; pp. 2806–2810. [Google Scholar]
- Hicheri, R.; Pätzold, M.; Youssef, N. Estimation of the Velocity of a Walking Person in Indoor Environments from mmWave Signals. In Proceedings of the 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 9–13 December 2018; pp. 1–7. [Google Scholar] [CrossRef]
- Collonge, S.; Zaharia, G.; El Zein, G. Influence of the furniture on 60 GHz radio propagation in a residential environment. In Proceedings of the Signals, Circuits and Systems, Iasi, Romania, 10–11 July 2003; Volume 2, pp. 413–416. [Google Scholar] [CrossRef] [Green Version]
- Mudonhi, A.; D’Errico, R.; Oestges, C. Indoor mmWave Channel Characterization with Large Virtual Antenna Arrays. In Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Karstensen, A.; Wei, F.; Carton, I.; Pedersen, G.F. Comparison of ray tracing simulations and channel measurements at mmWave bands for indoor scenarios. In Proceedings of the 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 10–15 April 2016; pp. 1–5. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Shao, Y.; Xi, L.; Zhang, H.; Zhang, J. Millimeter-Wave Propagation Measurement and Modeling in Indoor Corridor and Stairwell at 26 and 38 GHz. IEEE Access 2021, 9, 87792–87805. [Google Scholar] [CrossRef]
- Schmieder, M.; Eichler, T.; Wittig, S.; Peter, M.; Keusgen, W. Measurement and Characterization of an Indoor Industrial Environment at 3.7 and 28 GHz. In Proceedings of the 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15–20 March 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Sheeba Kumari, M.; Rao, S.A.; Kumar, N. Modeling and Link Budget Estimation of Directional mmWave Outdoor Environment for 5G. In Proceedings of the 2019 European Conference on Networks and Communications (EuCNC), Valencia, Spain, 18–21 June 2019; pp. 106–111. [Google Scholar] [CrossRef]
- Naqvi, S.H.R.; Ho, P.H. Achieving 5G NR mmWave Indoor Coverage Under Integrated Access Backhaul. IEEE Syst. J. 2021, 15, 1–11. [Google Scholar] [CrossRef]
- Naqvi, S.H.R.; Ho, P.H.; Peng, L. 5G NR mmWave indoor coverage with massive antenna system. J. Commun. Netw. 2021, 23, 1–11. [Google Scholar] [CrossRef]
- Legg, P.; McConnell, R. Meshed Backhauling of Small Cells Using IEEE802.11ad at 60 GHz. In Proceedings of the 2018 European Conference on Networks and Communications (EuCNC), Ljubljana, Slovenia, 18–21 June 2018; pp. 393–397. [Google Scholar] [CrossRef]
- El-Yamany, A.; Petri, M. An Adaptive IEEE 802.11ad Indoor mmWave Inner-Receiver Architecture. In Proceedings of the 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC), Gran Canaria, Spain, 28 May–1 June 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Gebreyohannes, F.T.; Frappé, A.; Kaiser, A. A Configurable Transmitter Architecture for IEEE 802.11ac and 802.11ad Standards. IEEE Trans. Circuits Syst. II Express Briefs 2016, 63, 9–13. [Google Scholar] [CrossRef]
- Saito, N.; Tsukizawa, T.; Shirakata, N.; Morita, T.; Tanaka, K.; Sato, J.; Morishita, Y.; Kanemaru, M.; Kitamura, R.; Shima, T.; et al. A Fully Integrated 60-GHz CMOS Transceiver Chipset Based on WiGig/IEEE 802.11ad With Built-In Self Calibration for Mobile Usage. IEEE J. Solid State Circuits 2013, 48, 3146–3159. [Google Scholar] [CrossRef]
- Zaaimia, M.; Touhami, R.; Hamza, A.; Yagoub, M.C.E. Design and performance evaluation of 802.11ad phys in 60 GHz multipath fading channel. In Proceedings of the 2013 8th International Workshop on Systems, Signal Processing and their Applications (WoSSPA), Algiers, Algeria, 12–15 May 2013; pp. 521–525. [Google Scholar] [CrossRef]
- Chandra, K.; Prasad, R.V.; Niemegeers, I. Performance Analysis of IEEE 802.11ad MAC Protocol. IEEE Commun. Lett. 2017, 21, 1513–1516. [Google Scholar] [CrossRef] [Green Version]
- Nino, R.; Nishio, T.; Murase, T. Throughput Measurement for IEEE 802.11ad with Various Obstacles and Reflectors by Real Machines. In Proceedings of the 2021 IEEE 3rd Global Conference on Life Sciences and Technologies (LifeTech), Nara, Japan, 9–11 March 2021; pp. 401–402. [Google Scholar] [CrossRef]
- Hirata, T.; Murase, T. Throughput Measurement of IEEE 802.11ad with Various Interferences on Vehicles. In Proceedings of the 2020 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-Taiwan), Taoyuan, Taiwan, 28–30 September 2020; pp. 1–2. [Google Scholar] [CrossRef]
- Saha, S.K.; Garg, A.; Koutsonikolas, D. A first look at TCP performance in indoor IEEE 802.11ad WLANs. In Proceedings of the 2015 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Hong Kong, China, 26 April–1 May 2015; pp. 63–64. [Google Scholar] [CrossRef]
- Shkel, A.; Mehrabani, A.; Kusuma, J. A Configurable 60 GHz Phased Array Platform for Multi-Link mmWave Channel Characterization. In Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Garcia Sanchez, S.; Mohanti, S.; Jaisinghani, D.; Chowdhury, K.R. Millimeter-wave Base Stations in the Sky: An Experimental Study of UAV-to-Ground Communications. IEEE Trans. Mob. Comput. 2020, 21, 1. [Google Scholar] [CrossRef]
- Sanchez, S.G.; Chowdhury, K.R. Robust 60 GHz Beamforming for UAVs: Experimental Analysis of Hovering, Blockage and Beam Selection. IEEE Internet Things J. 2020, 8, 9838–9854. [Google Scholar] [CrossRef]
- Tariq, M.H.; Chondroulis, I.; Skartsilas, P.; Babu, N.; Papadias, C.B. mmWave Massive MIMO Channel Measurements for Fixed Wireless and Smart City Applications. In Proceedings of the 2020 IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, London, UK, 31 August–3 September 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Bertizzolo, L.; Polese, M.; Bonati, L.; Gosain, A.; Zorzi, M.; Melodia, T. MmBAC: Location-Aided MmWave Backhaul Management for UAV-Based Aerial Cells. In Proceedings of the 3rd ACM Workshop on Millimeter-Wave Networks and Sensing Systems, Los Cabos, Mexico, 25 October 2019; pp. 7–12. [Google Scholar] [CrossRef]
- Polese, M.; Bertizzolo, L.; Bonati, L.; Gosain, A.; Melodia, T. An Experimental MmWave Channel Model for UAV-to-UAV Communications. In Proceedings of the 4th ACM Workshop on Millimeter-Wave Networks and Sensing Systems, London, UK, 25 September 2020. [Google Scholar] [CrossRef]
- Yan, H.; Domae, B.W.; Cabric, D. MmRAPID: Machine Learning Assisted Noncoherent Compressive Millimeter-Wave Beam Alignment. In Proceedings of the 4th ACM Workshop on Millimeter-Wave Networks and Sensing Systems, London, UK, 25 September 2020. [Google Scholar] [CrossRef]
- De Beelde, B.; Lopéz, A.A.; Plets, D.; Yusuf, M.; Tanghe, E.; Joseph, W. Directive mmWave radio channel modeling in a ship hull. Int. J. Microw. Wirel. Technol. 2021, 1–12. [Google Scholar] [CrossRef]
- Langen, B.; Lober, G.; Herzig, W. Reflection and transmission behaviour of building materials at 60 GHz. In Proceedings of the 5th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, Wireless Networks-Catching the Mobile Future, The Hague, The Netherlands, 18–23 September 1994; Volume 2, pp. 505–509. [Google Scholar] [CrossRef]
- Jacob, M.; Priebe, S.; Maltsev, A.; Lomayev, A.; Erceg, V.; Kurner, T. A ray tracing based stochastic human blockage model for the IEEE 802.11ad 60 GHz channel model. In Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), Rome, Italy, 11–15 April 2011; pp. 3084–3088. [Google Scholar]
MCS | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[dBm] | −78 | −68 | −66 | −64 | −64 | −62 | −63 | −62 | −61 | −59 | −55 | −54 | −53 |
Modulation | DBPSK | -BPSK | -BPSK | -BPSK | -BPSK | -BPSK | -QPSK | -QPSK | -QPSK | -QPSK | -16QAM | -16QAM | -16QAM |
DR [Mbps] | 27.5 | 385 | 770 | 962.5 | 1155 | 1251 | 1540 | 1925 | 2310 | 2502 | 3080 | 3850 | 4620 |
Parameter | Value |
---|---|
Grid size | 20 cm |
Receiver margin | 10 cm |
Angular resolution | /48 |
Maximum PL | 140 dB |
Maximum # reflections | 5 |
Transmit power | 15 dBm |
Scenario | PL | PL | AS | PL | PL |
---|---|---|---|---|---|
LOS | 83.1 dB | 81.8 dB | 30.5 | 82.9 dB | 83.0 dB |
NLOS 1 | 88.7 dB | 87.0 dB | 52.8 | 87.5 dB | 97.5 dB |
NLOS 2 | 95.6 dB | 92.1 dB | 65.0 | 106.1 dB | 92.4 dB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Beelde, B.; Almarcha, A.; Plets, D.; Joseph, W. V-Band Channel Modeling, Throughput Measurements, and Coverage Prediction for Indoor Residential Environments. Electronics 2022, 11, 659. https://doi.org/10.3390/electronics11040659
De Beelde B, Almarcha A, Plets D, Joseph W. V-Band Channel Modeling, Throughput Measurements, and Coverage Prediction for Indoor Residential Environments. Electronics. 2022; 11(4):659. https://doi.org/10.3390/electronics11040659
Chicago/Turabian StyleDe Beelde, Brecht, Andrés Almarcha, David Plets, and Wout Joseph. 2022. "V-Band Channel Modeling, Throughput Measurements, and Coverage Prediction for Indoor Residential Environments" Electronics 11, no. 4: 659. https://doi.org/10.3390/electronics11040659
APA StyleDe Beelde, B., Almarcha, A., Plets, D., & Joseph, W. (2022). V-Band Channel Modeling, Throughput Measurements, and Coverage Prediction for Indoor Residential Environments. Electronics, 11(4), 659. https://doi.org/10.3390/electronics11040659