Performance Enhancement of Functional Delay and Sum Beamforming for Spherical Microphone Arrays
Abstract
:1. Introduction
2. Theory of EFDAS
2.1. Signal Model of Solid Spherical Microphone Arrays
2.2. Reconstruction of the Measured CSM
2.2.1. DRec
2.2.2. RPCA
2.2.3. PFA
2.3. The Output of EFDAS
3. Simulations
3.1. Acoustic Imaging Colormaps
3.2. Performance Analysis
3.2.1. Diagonal Reconstruction Error of Signal CSM
3.2.2. Acoustic Imaging Accuracy
3.3. Improvements of Acoustic Imaging Performance
3.3.1. Sidelobe Suppression and Mainlobe Reduction
3.3.2. Quantification and Localization of Weak Sources
4. Experiment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gil-Lopez, T.; Medina-Molina, M.; Verdu-Vazquez, A.; Martel-Rodriguez, B. Acoustic and economic analysis of the use of palm tree pruning waste in noise barriers to mitigate the environmental impact of motorways. Sci. Total Environ. 2017, 584, 1066–1076. [Google Scholar] [CrossRef] [PubMed]
- Amran, M.; Murali, G.; Khalid, N.H.A.; Fediuk, R.; Ozbakkaloglu, T.; Lee, Y.H.; Haruna, S.; Lee, Y.Y. Slag uses in making an ecofriendly and sustainable concrete: A review. Constr. Build. Mater. 2021, 272, 121942. [Google Scholar] [CrossRef]
- Chiariotti, P.; Martarelli, M.; Castellini, P. Acoustic beamforming for noise source localization—Reviews, methodology and applications. Mech. Syst. Signal Proc. 2019, 120, 422–448. [Google Scholar] [CrossRef]
- Sun, H.; Yan, S.; Svensson, U.P. Robust minimum sidelobe beamforming for spherical microphone arrays. IEEE Trans. Audio Speech Lang. Process. 2011, 19, 1045–1051. [Google Scholar] [CrossRef]
- Wang, D.; Guo, J.; Xiao, X.; Sheng, X. CSA-based acoustic beamforming for the contribution analysis of air-borne tyre noise. Mech. Syst. Signal Proc. 2022, 166, 108409. [Google Scholar] [CrossRef]
- Haddad, K.; Hald, J. 3D localization of acoustic sources with a spherical array. In Proceedings of the 7th European Conference on Noise Control 2008, EURONOISE 2008, Pairs, France, 29 June–4 July 2008; pp. 1585–1590. [Google Scholar]
- Hald, J. Spherical beamforming with enhanced dynamic range. SAE Int. J. Passeng. Cars Mech. Syst. 2013, 6, 1334–1341. [Google Scholar] [CrossRef]
- Chu, Z.; Yang, Y.; He, Y. Deconvolution for three-dimensional acoustic source identification based on spherical harmonics beamforming. J. Sound Vib. 2015, 344, 484–502. [Google Scholar] [CrossRef]
- Yang, Y.; Chu, Z.; Shen, L.; Ping, G.; Xu, Z. Fast fourier-based deconvolution for three-dimensional acoustic source identification with solid spherical arrays. Mech. Syst. Signal Proc. 2018, 107, 183–201. [Google Scholar] [CrossRef]
- Dougherty, R.P. Functional beamforming. In Proceedings of the 5th Berlin Beamforming Conference, Berlin, Germany, 19–20 February 2014. BeBeC-2014-S01. [Google Scholar]
- Yang, Y.; Chu, Z.; Shen, L.; Xu, Z. Functional delay and sum beamforming for three-dimensional acoustic source identification with solid spherical arrays. J. Sound Vib. 2016, 373, 340–359. [Google Scholar] [CrossRef]
- Chu, Z.; Zhao, S.; Yang, Y.; Yang, Y. Deconvolution using CLEAN-SC for acoustic source identification with spherical microphone arrays. J. Sound Vib. 2019, 440, 161–173. [Google Scholar] [CrossRef]
- Hald, J.; Kuroda, H.; Makihara, T.; Ishii, Y. Mapping of contributions from car-exterior aerodynamic sources to an in-cabin reference signal using Clean-SC. In Proceedings of the 45th International Congress and Exposition on Noise Control Engineering: Towards a Quieter Future, INTER-NOISE 2016, Hamburg, Germany, 21–24 August 2016; pp. 3732–3743. [Google Scholar]
- Dinsenmeyer, A.; Leclère, Q.; Antoni, J.; Julliard, E. Comparison of microphone array denoising techniques and application to flight test measurements. In Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference, Delft, The Netherlands, 20–23 May 2019; pp. 2744–2753. [Google Scholar]
- Hald, J. Denoising of cross-spectral matrices using canonical coherence. J. Acoust. Soc. Am. 2019, 146, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, R.P. Cross spectral matrix diagonal optimization. In Proceedings of the 6th Berlin Beamforming Conference, Berlin, Germany, 29 February–1 March 2016. BeBeC-2016-S02. [Google Scholar]
- Hald, J. Removal of incoherent noise from an averaged cross-spectral matrix. J. Acoust. Soc. Am. 2017, 142, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Dinsenmeyer, A.; Antoni, J.; Leclère, Q.; Pereira, A. On the denoising of cross-spectral matrices for (aero) acoustic applications. In Proceedings of the 7th Berlin Beamforming Conference, Berlin, Germany, 5–6 March 2018. BeBeC-2018-S02. [Google Scholar]
- Dinsenmeyer, A.; Antoni, J.; Leclère, Q.; Pereira, A. A probabilistic approach for cross-spectral matrix denoising: Bechmarking with some recent methods. J. Acoust. Soc. Am. 2020, 147, 3108–3123. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Han, Q.; Zhang, K.; Zhang, Y. An intelligent fault diagnosis method of rolling bearings based on Welch power spectrum transformation with radial basis function neural network. J. Vib. Control 2020, 26, 629–642. [Google Scholar] [CrossRef]
- Wright, J.; Peng, Y.; Ma, Y. Robust principal component analysis: Exact recovery of corrupted low-rank matrices by convex optimization. In Proceedings of the 23rd Annual Conference on Neural Information Processing Systems 2009, NIPS 2009, Vancouver, BC, Canada, 7–10 December 2009; pp. 2080–2088. [Google Scholar]
- Antoni, J.; Vanwynsberghe, C.; Magueresse, T.L.; Bouley, S.; Gilquin, L. Mapping uncertainties involved in sound source reconstruction with a cross-spectral-matrix-based Gibbs sampler. J. Acoust. Soc. Am. 2019, 146, 4947–4961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, Z.; Yang, Y.; Yang, Y. A new insight and improvement on deconvolution beamforming in spherical harmonics domain. Appl. Acoust. 2021, 177, 107900. [Google Scholar] [CrossRef]
Priors | Hyper-Priors |
---|---|
Performances | EFDAS-DRec | EFDAS-RPCA | EFDAS-PFA |
---|---|---|---|
Parameter setting | none | ||
(@SNR = 0 dB and 1000 Snapshots) | −6.0 dB | −13.3 dB | −12.9 dB |
Computational efficiency | 0.8 s | 0.1 s | |
Sidelobe suppression | ★ * | ★★ | ★★★ |
Mainlobe reduction | ★ | ★★ | ★★★ |
Quantification accuracy | ★★★ | ★★ | ★ |
Weak sources localization | ★ | ★★ | ★★★ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Chu, Z.; Li, L. Performance Enhancement of Functional Delay and Sum Beamforming for Spherical Microphone Arrays. Electronics 2022, 11, 1132. https://doi.org/10.3390/electronics11071132
Zhao Y, Chu Z, Li L. Performance Enhancement of Functional Delay and Sum Beamforming for Spherical Microphone Arrays. Electronics. 2022; 11(7):1132. https://doi.org/10.3390/electronics11071132
Chicago/Turabian StyleZhao, Yang, Zhigang Chu, and Linyong Li. 2022. "Performance Enhancement of Functional Delay and Sum Beamforming for Spherical Microphone Arrays" Electronics 11, no. 7: 1132. https://doi.org/10.3390/electronics11071132
APA StyleZhao, Y., Chu, Z., & Li, L. (2022). Performance Enhancement of Functional Delay and Sum Beamforming for Spherical Microphone Arrays. Electronics, 11(7), 1132. https://doi.org/10.3390/electronics11071132