Quasi-Optical Theory of Relativistic Cherenkov Oscillators and Amplifiers with Oversized Electrodynamic Structures
Abstract
:1. Introduction
2. Electrodynamics of Weakly Corrugated Planar and Cylindrical Waveguides
2.1. Dispersion Characteristics of Normal Waves near a Single Periodically Corrugated Plate
2.2. Dispersion Characteristics of Normal Waves in a Planar Corrugated Waveguide
2.3. Dispersion Characteristics of Normal Waves in Oversized Cylindrical Waveguides with Azimuthally Symmetric Corrugation
2.4. Evanescent Eigenmodes in Finite-Length Periodic Structures
3. Quasi-Optical Models of Planar Cherenkov-Type Devices
3.1. General Self-Consistent Equations of Electron-Wave Interaction
3.2. Surface-Wave Oscillator in π-Mode Operation Regime
3.3. Diffraction Mode Selection in the Planar Surface-Wave Oscillator
3.4. Surface-Wave BWO Operation Regimes
3.5. TWT Operation Regimes
3.6. Orotron Operation Regimes
3.7. Super-Radiant Regimes of Surface-Wave Excitation by Extended Electron Bunches
4. Quasi-Optical Theory of Cylindrical Surface-Wave Oscillators
4.1. Symmetric Mode Excitation
4.2. Non-Symmetric Mode Excitation
5. Conclusions—Novel Schemes of Relativistic Surface-Wave Devices Utilizing Complex Gratings
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kovalev, N.F.; Petelin, M.I.; Raiser, M.D.; Smorgonskii, A.V.; Tsopp, L.E. Generation of powerful electromagnetic radiation pulses by a beam of relativistic electrons. JETP Lett. 1973, 18, 138. [Google Scholar]
- Kovalev, N.F.; Petrukhina, V.I.; Smorgonskii, A.V. Ultrarelativistic carcinotron. Radio Eng. Electron. Phys. 1975, 20, 1547–1550. (In Russian) [Google Scholar]
- Kovalev, N.F.; Smorgonsky, A.V. The theory of ultrarelativistic TWT. Radio Eng. Electron. Phys. 1975, 20, 1305–1309. (In Russian) [Google Scholar]
- Carmel, Y.; Ivers, J.; Kribel, R.E.; Nation, J.A. Intense Coherent Cherenkov Radiation Due to the Interaction of a Relativistic Electron Beam with a Slow-Wave Structure. Phys. Rev. Lett. 1974, 33, 1275. [Google Scholar] [CrossRef]
- Bratman, V.L.; Denisov, G.G.; Kol’chugin, B.D.; Korovin, S.D.; Polevin, S.D.; Rostov, V.V. Powerful millimeter-wave generators based on the stimulated Cerenkov radiation of relativistic electron beams. Int. J. Infrared Millim. Waves 1984, 5, 1311–1332. [Google Scholar] [CrossRef]
- Bratman, V.L.; Denisov, G.G.; Ofitserov, M.M.; Korovin, S.D.; Polevin, S.D.; Rostov, V.V. Millimeter-wave HF relativistic electron oscillators. IEEE Trans. Plasma Sci. 1987, 15, 2–15. [Google Scholar] [CrossRef]
- Abe, D.K.; Carmel, Y.; Miller, S.M.; Bromborsky, A.; Levush, B.; Antonsen, T.M., Jr.; Destler, W.W. Experimental Studies of Overmoded Relativistic Backward-Wave Oscillators. IEEE Trans. Plasma Sci. 1998, 26, 591–604. [Google Scholar] [CrossRef] [Green Version]
- Levush, B.; Antonsen, T.M.; Bromborsky, A.; Lou, W.R.; Carmel, Y. Relativistic backward-wave oscillators: Theory and experiment. Phys. Fluids B 1992, 4, 2293. [Google Scholar] [CrossRef]
- Gunin, A.V.; Klimov, A.I.; Korovin, S.D.; Kurkan, I.K.; Pegel, I.V.; Polevin, S.D.; Roitman, A.M.; Rostov, V.V.; Stepchenko, A.S.; Totmeninov, E.M. Relativistic X-band BWO with 3-GW output power. IEEE Trans. Plasma Sci. 1998, 26, 326–331. [Google Scholar] [CrossRef]
- Abubakirov, E.B.; Denisenko, A.N.; Kovalev, N.F.; Kopelovich, E.A.; Savel’ev, A.V.; Soluyanov, E.I.; Fuks, M.I.; Yastrebov, V.V. Relativistic backward wave oscillator using a selective mode converter. Tech. Phys. 1999, 44, 1356–1359. [Google Scholar] [CrossRef]
- Kovalev, N.F.; Palitsin, A.V.; Fuks, M.I. Cyclotron Suppression of Generation in a Relativistic Backward-wave Oscillator of Cherenkov Type. Radiophys. Quantum Electron. 2006, 49, 93–107. [Google Scholar] [CrossRef]
- Moreland, L.D.; Schamiloglu, E.; Lemke, R.W.; Roitman, A.M.; Korovin, S.D.; Rostov, V.V. Enhanced frequency agility of high-power relativistic backward wave oscillators. IEEE Trans. Plasma Sci. 1996, 24, 852–858. [Google Scholar] [CrossRef]
- Goykhman, M.B.; Kladukhin, V.V.; Kladukhin, S.V.; Kovalev, N.F.; Kolganov, N.G.; Khramtsov, S.P. A high power relativistic backward wave oscillator with a longitudinal slot slow-wave system. Tech. Phys. Lett. 2014, 40, 84–86. [Google Scholar] [CrossRef]
- Totmeninov, E.M.; Klimov, A.I.; Rostov, V.V. Relativistic Cherenkov microwave oscillator without a guiding magnetic field. IEEE Trans. Plasma Sci. 2009, 37, 1242–1245. [Google Scholar] [CrossRef]
- Bunkin, B.V.; Gaponovgrekhov, A.V.; Elchaninov, A.S.; Zagulov, F.Y.; Korovin, S.D.; Mesyats, G.A.; Osipov, M.L.; Otlivanchik, E.A.; Petelin, M.I.; Prokhorov, A.M.; et al. Radar based on UHF-generator with relativistic electron-beam. Pisma V Zhurnal Tekhnicheskoi Fiz. 1992, 18, 61–65. [Google Scholar]
- Abubakirov, E.B.; Botvinnik, I.E.; Bratman, V.L.; Vinogradov, D.V.; Denisov, G.G.; Kazacha, V.I.; Krasnykh, A.K.; Ofitserov, M.M.; Perelstein, E.A.; Sidorov, A.I. Generation of Powerful UHF Emission of Millimeter-wave Range in the Cherenkov TWT with Relativistic High-current Electron-beams. Zhurnal Tekhnicheskoi Fiz. 1990, 60, 186–190. (In Russian) [Google Scholar]
- Abubakirov, E.B.; Denisenko, A.N.; Fuchs, M.I.; Kolganov, N.G.; Kovalev, N.F.; Petelin, M.I.; Savelyev, A.V.; Schamiloglu, E.; Soluyanov, E.I.; Yastrebov, V.V. An X-band gigawatt amplifier. IEEE Trans. Plasma Sci. 2002, 30, 1041–1052. [Google Scholar] [CrossRef]
- Alexandrov, A.F.; Galuzo, S.Y.; Kanavets, V.I.; Pletyushkin, V.A. Surface wave excitation by electron flow in a diaphragmatic waveguide. Sov. J. Tech. Phys. 1981, 51, 1727–1730. [Google Scholar]
- AVlasov, N.; Shkvarunets, A.G.; Rodgers, J.C.; Carmel, Y.; Antonsen, T.M.; Abuelfadl, T.M.; Lingze, D.; Cherepenin, V.A.; Nusinovich, G.S.; Botton, M.; et al. Overmoded GW-class surface-wave microwave oscillator. IEEE Trans. Plasma Sci. 2000, 28, 550–560. [Google Scholar]
- Bugaev, P.S.; Cherepenin, V.A.; Kanavets, V.I.; Klimov, A.I.; Kopenkin, A.D.; Koshelev, V.I.; Popov, V.A.; Slepkov, A.I. Relativistic multiwave Cherenkov generators. IEEE Trans. Plasma Sci. 1990, 18, 525–536. [Google Scholar] [CrossRef]
- Wang, G.; Wang, J.; Tong, C.; Li, X.; Wang, X.; Li, S.; Lu, X. A repetitive 0.14 THz relativistic surface wave oscillator. Phys. Plasmas 2013, 20, 043105. [Google Scholar] [CrossRef]
- Wang, G.; Wang, J.; Zeng, P.; Li, S.; Wang, D. Overmoded Subterahertz Surface Wave Oscillator with Pure TM01 Mode Otput. Phys. Plasmas 2016, 23, 023104. [Google Scholar] [CrossRef]
- San, M.T.; Ogura, K.; Yambe, K.; Annaka, Y.; Gong, S.; Kawamura, J.; Miura, T.; Kubo, S.; Shimozuma, T.; Kobayashi, S.; et al. Experimental Study on W-Band (75–110 GHz) Oversized Surface Wave Oscillator Driven by Weakly Relativistic Electron Beams. Plasma Fusion Res. 2016, 11, 2406085. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Wang, G.; Wang, D.; Li, S.; Zeng, P. A megawatt-level surface wave oscillator in Y-band with large oversized structure driven by annular relativistic electron beam. Sci. Rep. 2018, 8, 6978. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, J.; Wang, D. Relativistic Surface Wave Oscillator in Y-Band with Large Oversized Structures Modulated by Dual Reflectors. Sci. Rep. 2020, 10, 336. [Google Scholar] [CrossRef] [PubMed]
- Rusin, F.S.; Bogomolov, G.D. Generation of Electromagnetic Oscillations in an Open Resonator. JETP Lett. 1966, 4, 160. [Google Scholar]
- Asgekar, V.B.; Dattoli, G. Theory Of Cherenkov Free Electron Lasers: An Analytical Treatment of Saturation. Opt. Commun. 2005, 255, 309. [Google Scholar] [CrossRef]
- Ginzburg, N.S.; Kuznetsov, S.P.; Fedoseeva, T.N. Theory of transients in relativistic backward-wave tubes. Radiophys. Quantum Electron. 1978, 21, 728–739. [Google Scholar] [CrossRef]
- Levush, B.; Antonsen, T.M.; Bromborsky, A.; Lou, W.R.; Carmel, Y. Theory of relativistic BWOs with end reflections. IEEE Trans. Plasma Sci. 1992, 20, 263–280. [Google Scholar] [CrossRef]
- Miller, S.M.; Antonsen, T.M., Jr.; Levush, B.; Bromborsky, A.; Abe, D.K.; Carmel, Y. Theory of relativistic backward wave oscillators operating near cutoff. Phys. Plasmas 1994, 1, 730–740. [Google Scholar] [CrossRef]
- Vlasov, A.N.; Nusinovich, G.S.; Levush, B. Effect of the zero spatial harmonic in a slow electromagnetic wave on operation of relativistic backward-wave oscillators. Phys. Plasmas 1997, 4, 1402–1412. [Google Scholar] [CrossRef]
- Pierce, J.R. Traveling Wave Tubes, 1st ed.; Van Nostrand: Princeton, NJ, USA, 1950. [Google Scholar]
- Rowe, J.E. Nonlinear Electron-Wave Interaction Phenomena; Academic Press: New York, NY, USA, 1965. [Google Scholar]
- Ginzburg, N.S.; Zavol’skii, N.A.; Zapevalov, V.E.; Moiseev, M.A.; Novozhilova, Y.V. Nonstationary Processes in a Diffraction-Output Orotron. Tech. Phys. 2000, 45, 480. [Google Scholar] [CrossRef]
- Nusinovich, G.S. Introduction to the Physics of Gyrotrons; J. Hopkins University Press: Baltimore, MD, USA, 2004. [Google Scholar]
- Ginzburg, N.S.; Malkin, A.M.; Sergeev, A.S.; Zaslavsky, V.Y. Quasi-optical theory of relativistic submillimeter surface-wave oscillators. Appl. Phys. Lett. 2011, 99, 121505. [Google Scholar] [CrossRef]
- Ginzburg, N.S.; Malkin, A.M.; Zheleznov, I.V.; Zaslavsky, V.Y.; Sergeev, A.S. Stimulated Cherenkov radiation of a relativistic electron beam moving over a periodically corrugated surface (quasi-optical theory). J. Exp. Theor. Phys. 2013, 117, 975–987. [Google Scholar] [CrossRef]
- Ginzburg, N.S.; Malkin, A.M.; Zheleznov, I.V.; Sergeev, A.S. Evanescent waves propagation along a periodically corrugated surface and their amplification by relativistic electron beam (quasi-optical theory). Phys. Plasmas 2013, 20, 063105. [Google Scholar] [CrossRef]
- Ginzburg, N.S.; Malkin, A.M.; Sergeev, A.S.; Zaslavsky, V.Y. Quasi-optical theory of relativistic surface-wave oscillators with one-dimensional and two-dimensional periodic planar structures. Phys. Plasmas 2013, 20, 113104. [Google Scholar] [CrossRef]
- Malkin, A.M.; Zheleznov, I.V.; Sergeev, A.S.; Ginzburg, N.S. Quasi-optical theory of relativistic Cherenkov surface-wave oscillators with oversized cylindrical waveguides. Phys. Plasmas 2021, 28, 063102. [Google Scholar] [CrossRef]
- Malkin, A.M.; Zheleznov, I.V.; Sergeev, A.S.; Zaslavsky, V.Y.; Makhalov, P.B.; Ginzburg, N.S. Unified quasi-optical theory of short-wavelength radiation amplification by relativistic electron beams moving near the impedance surfaces. Phys. Plasmas 2020, 27, 113106. [Google Scholar] [CrossRef]
- Katsenelenbaum, B.Z.; del Rio, L.M.; Pereyaslavets, M.; Ayza, M.S.; Thumm, M. Theory of Nonuniform Waveguides: The Cross-section Method. IET Electromagn. Waves Ser. 1998, 44, 249. [Google Scholar]
- Fedotov, A.E.; Makhalov, P.B. Transverse dynamics of a surface wave excited by a wide electron beam. Phys. Plasmas 2012, 19, 033103. [Google Scholar] [CrossRef]
- Wang, Z.; Gong, Y.; Wei, Y.; Duan, Z. High-power millimeter-wave BWO driven by sheet electron beam. IEEE Trans. Electron Dev. 2013, 60, 471. [Google Scholar] [CrossRef]
- Shin, Y.-M.; Zhao, J.; Barnett, L.R.; Luhmann, N.C. Investigation of terahertz sheet beam traveling wave tube amplifier with nanocomposite cathode. Phys. Plasmas 2012, 17, 123105. [Google Scholar] [CrossRef]
- Shin, Y.-M.; Baig, A.; Barnett, L.R.; Luhmann, N.C.; Pasour, J.; Larsen, P. Modeling investigation of an ultrawideband terahertz sheet beam TWT amplifier Circuit. IEEE Trans. Electron Dev. 2011, 58, 3213–3218. [Google Scholar] [CrossRef]
- Malkin, A.M.; Zaslavsky, V.Y.; Zheleznov, I.V.; Goykhman, M.B.; Gromov, A.V.; Palitsin, A.V.; Sergeev, A.S.; Fedotov, A.É.; Makhalov, P.B.; Ginzburg, N.S. Development of high-power millimeter-wave surface-wave generators based on relativistic ribbon electron beams. Radiophys. Quantum Electron. 2020, 63, 458. [Google Scholar] [CrossRef]
- Leontovich, M.A. On the Approximate Boundary Conditions for the Electromagnetic Field on the Surface of Well Conducting Bodies. In Investigations on Propagation of Radio Waves; AN SSSR: Moscow, Russia, 1948; pp. 5–10. [Google Scholar]
- Peskov, N.Y.; Ginzburg, N.S.; Golubev, I.I.; Golubykh, S.M.; Kaminsky, A.K.; Kozlov, A.P.; Malkin, A.M.; Sedykh, S.N.; Sergeev, A.S.; Sidorov, A.I.; et al. Powerful oversized W-band free-electron maser with advanced Bragg resonator based on coupling of propagating and cutoff waves. Appl. Phys. Lett. 2020, 116, 213505. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 6th ed.; U.S. Dept. of Commerce, National Bureau of Standards: Washington, DC, USA, 1972. [Google Scholar]
- Ginzburg, N.S.; Malkin, A.M.; Sergeev, A.S.; Fil’chenkov, S.E.; Zaslavsky, V.Y. Highly selective surface-wave resonators for terahertz frequency range formed by metallic Bragg gratings. Phys. Lett. A 2018, 382, 925–929. [Google Scholar] [CrossRef]
- Ginzburg, N.S.; Malkin, A.M.; Sergeev, A.S.; Zaslavsky, V.Y. Powerful surface-wave oscillators with two-dimensional periodic structures. Appl. Phys. Lett. 2012, 100, 143510. [Google Scholar] [CrossRef]
- Ginzburg, N.S.; Malkin, A.M.; Sergeev, A.S.; Zaslavsky, V.Y. Oversized co-axial and cylindrical surface-wave oscillators with two-dimensional periodical grating (quasi-optical model). J. Appl. Phys. 2013, 113, 104504. [Google Scholar] [CrossRef]
- Glyavin, M.Y.; Luchinin, A.G.; Nusinovich, G.S.; Rodgers, J.; Kashyn, D.G.; Romero-Talamas, C.A.; Pu, R. A 670 GHz gyrotron with record power and efficiency. Appl. Phys. Lett. 2012, 101, 153503. [Google Scholar] [CrossRef]
- Ginzburg, N.S.; Novozhilova, Y.V.; Zotova, I.V.; Sergeev, A.S.; Peskov, N.Y.; Phelps, A.D.R.; Wiggins, S.M.; Cross, A.W.; Ronald, K.; He, W.; et al. Generation of powerful subnanosecond microwave pulses by intense electron bunches moving in a periodic backward wave structure in the superradiative regime. Phys. Rev. E 1999, 60, 3297. [Google Scholar] [CrossRef]
- Eltchaninov, A.A.; Korovin, S.D.; Rostov, V.V.; Pegel, I.V.; Mesyats, G.A.; Rukin, S.N.; Shpak, V.G.; Yalandin, M.I.; Ginzburg, N.S. Production of short microwave pulses with a peak power exceeding the driving electron beam power. Laser Part. Beams 2003, 21, 187. [Google Scholar] [CrossRef]
- Korovin, S.D.; Eltchaninov, A.A.; Rostov, V.V.; Shpak, V.G.; Yalandin, M.I.; Ginzburg, N.S.; Sergeev, A.S.; Zotova, I.V. Generation of Cherenkov superradiance pulses with a peak power exceeding the power of the driving short electron beam. Phys. Rev. E. 2006, 74, 016501. [Google Scholar] [CrossRef] [PubMed]
- Rostov, V.V.; Elchaninov, A.A.; Romanchenko, I.V.; Yalandin, M.I. A coherent two-channel source of Cherenkov superradiance pulses. Appl. Phys. Lett. 2012, 100, 224102. [Google Scholar] [CrossRef]
- Shpak, V.G.; Shunailov, S.A.; Yalandin, M.I.; Dyad’kov, A.N. The RADAN SEF-303A, a small high-current pulsed power supply. Instrum. Exp. Tech. 1993, 25, 25031539. [Google Scholar]
- Mesyats, G.A.; Yalandin, M.I. High-power picosecond electronics. Physics-Uspekhi 2007, 48, 211. [Google Scholar] [CrossRef]
- Ginzburg, N.S.; Malkin, A.M.; Sergeev, A.S.; Zotova, I.V.; Zaslavsky, V.Y.; Zheleznov, I.V. 3D Quasioptical Theory of Terahertz Superradiance of an Extended Electron Bunch Moving Over a Corrugated Surface. Phys. Rev. Lett. 2013, 110, 184801. [Google Scholar] [CrossRef]
- Ginzburg, N.S.; Malkin, A.M.; Sergeev, A.S.; Zheleznov, I.V.; Zotova, I.V.; Zaslavsky, V.Y.; Boltachev, G.S.; Sharypov, K.A.; Shunailov, S.A.; Ul’masculov, M.R.; et al. Generation of Subterahertz Superradiance Pulses Based on Excitation of a Surface Wave by Relativistic Electron Bunches Moving in Oversized Corrugated Waveguides. Phys. Rev. Lett. 2016, 117, 204801. [Google Scholar] [CrossRef]
- Power, J.G. Overview of photoinjectors. In AIP Conference Proceedings, Proceedings of 14th Advanced Accelerator Concepts Workshop, Annapolis, MD, USA, 13–19 June 2010; Nusinovich, G., Gold, S., Eds.; American Institute of Physics: College Park, MD, USA, 2010; Volume 1299. [Google Scholar]
- Piot, P.; Sun, Y.E.; Kim, K.J. Photoinjector generation of a flat electron beam with transverse emittance ratio of 100. Phys. Rev. ST-AB 2006, 9, 031001. [Google Scholar] [CrossRef] [Green Version]
- Konoplev, I.V.; McGrane, P.; He, W.; Cross, A.W.; Phelps, A.D.R.; Whyte, C.G.; Ronald, K.; Robertson, C.W. Experimental Study of Coaxial Free-Electron Maser Based on Two-Dimensional Distributed Feedback. Phys. Rev. Lett. 2006, 96, 035002. [Google Scholar] [CrossRef]
- Ginzburg, N.S.; Ilyakov, E.V.; Kulagin, I.S.; Malkin, A.M.; Peskov, N.Y.; Sergeev, A.S.; Zaslavsky, V.Y. Theoretical and experimental studies of relativistic oversized Ka-band surface-wave oscillator based on 2D periodical corrugated structure. Phys. Rev. Accel. Beams 2018, 21, 080701. [Google Scholar] [CrossRef] [Green Version]
- Arzhannikov, A.V.; Ginzburg, N.S.; Kalinin, P.V.; Kuznetsov, S.A.; Malkin, A.M.; Peskov, N.Y.; Sergeev, A.S.; Sinitsky, S.L.; Stepanov, V.D.; Thumm, M.; et al. Using Two-Dimensional Distributed Feedback for Synchronization of Radiation from Two Parallel-Sheet Electron Beams in a Free-Electron Maser. Phys. Rev. Lett. 2016, 117, 114801. [Google Scholar] [CrossRef] [PubMed]
- Ginzburg, N.S.; Zaslavsky, V.Y.; Malkin, A.M.; Sergeev, A.S.; Zotova, I.V.; Sharypov, K.A.; Shunailov, S.A.; Shpak, V.G.; Ul’masculov, M.R.; Yalandin, M.I. Generation of intense spatially coherent superradiant pulses in strongly oversized 2D periodical surface-wave structure. Appl. Phys. Lett. 2020, 117, 183505. [Google Scholar] [CrossRef]
- Malkin, A.M.; Fedotov, A.E.; Zaslavsky, V.Y.; Fil’chenkov, S.E.; Sergeev, A.S.; Egorova, E.D.; Ginzburg, N.S. Relativistic sub-THz surface-wave oscillators with transverse Gaussian-like radiation output. IEEE Electron Device Lett. 2021, 42, 751. [Google Scholar] [CrossRef]
- Ginzburg, N.S.; Malkin, A.M.; Zaslavsky, V.Y.; Fedotov, A.E.; Sergeev, A.S. Relativistic sub-THz surface-wave sheet-beam amplifier with transverse energy input and output. IEEE Trans. Electron Devices 2021, 69, 759. [Google Scholar] [CrossRef]
Slow-Wave System Parameters | Electron Beam Parameters | ||
---|---|---|---|
Length of corrugated section | cm | Total current | kA |
Corrugation period | cm | Accelerating voltage | ) |
Mean radius | ) | Mean beam radius | cm |
Corrugation amplitude | mm | Beam thickness | mm |
Output Parameters | |||
Efficiency | % | ||
Integral radiated power | GW | ||
Operating frequency | GHz |
Slow-Wave System Parameters | Electron Beam Parameters | ||
---|---|---|---|
Length of corrugated section | cm | Total current | A |
Corrugation period | mm | Accelerating voltage | kV |
Mean radius | ) | Mean beam radius | mm |
Corrugation amplitude | mm | Beam thickness | mm |
Output Parameters | |||
Efficiency | % | ||
Integral radiated power | MW | ||
Operating frequency | GHz |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malkin, A.; Ginzburg, N.; Zaslavsky, V.; Zheleznov, I.; Sergeev, A. Quasi-Optical Theory of Relativistic Cherenkov Oscillators and Amplifiers with Oversized Electrodynamic Structures. Electronics 2022, 11, 1197. https://doi.org/10.3390/electronics11081197
Malkin A, Ginzburg N, Zaslavsky V, Zheleznov I, Sergeev A. Quasi-Optical Theory of Relativistic Cherenkov Oscillators and Amplifiers with Oversized Electrodynamic Structures. Electronics. 2022; 11(8):1197. https://doi.org/10.3390/electronics11081197
Chicago/Turabian StyleMalkin, Andrey, Naum Ginzburg, Vladislav Zaslavsky, Ilya Zheleznov, and Alexander Sergeev. 2022. "Quasi-Optical Theory of Relativistic Cherenkov Oscillators and Amplifiers with Oversized Electrodynamic Structures" Electronics 11, no. 8: 1197. https://doi.org/10.3390/electronics11081197
APA StyleMalkin, A., Ginzburg, N., Zaslavsky, V., Zheleznov, I., & Sergeev, A. (2022). Quasi-Optical Theory of Relativistic Cherenkov Oscillators and Amplifiers with Oversized Electrodynamic Structures. Electronics, 11(8), 1197. https://doi.org/10.3390/electronics11081197