Very Low-Noise Figure HTSC RF Front-End
Abstract
:1. Introduction
2. Filter Design, Simulations, Implementation, and Packaging Optimization
3. RF Front-End Experimental Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Zhan, C.; Yao, G. Optimizing Caching Placement for Mobile Users in Heterogeneous Wireless Network. In Proceedings of the 2017 IEEE 42nd Conference on Local Computer Networks (LCN), Singapore, 9–12 October 2017; pp. 175–178. [Google Scholar]
- Barazzetta, M.; Micheli, D.; Bastianelli, L.; Diamanti, R.; Totta, M.; Obino, P.; Lattanzi, R.; Moglie, F.; Primiani, V.M. A comparison between different reception diversity schemes of a 4G-LTE base station in reverberation chamber: A deployment in a live cellular network. IEEE Trans. Electromagn. Compat. 2017, 59, 2029–2037. [Google Scholar] [CrossRef]
- Stavrou, V.N.; Tsoulos, I.G.; Mastorakis, N.E. Transformations for FIR and IIR filters’ design. Symmetry 2021, 13, 533. [Google Scholar] [CrossRef]
- Tsoulos, I.G.; Stavrou, V.; Mastorakis, N.E.; Tsalikakis, D. GenConstraint: A programming tool for constraint optimization problems. SoftwareX 2019, 10, 100355. [Google Scholar] [CrossRef]
- Reza, A.; Vatsa, V.; Pose, M.S.; Mazumdar, A.; Garai, A.; Krishnamoorthy, H.; Gupta, G.; Nanal, V.; Pillay, R.G.; Shrivastava, A. A cryogenic front-end preamplifier operating at 120 K for bolometric detector. J. Low Temp. Phys. 2020, 199, 200–205. [Google Scholar] [CrossRef]
- Mazierska, J. Superconducting cryogenic front end receivers. In Proceedings of the 15th International Conference on Microwaves, Radar and Wireless Communications, Phoenix, AZ, USA, 17–19 May 2004; pp. 351–354. [Google Scholar]
- Lancaster, M.J. Passive Microwave Device Applications of High-Temperature Superconductors, 1st ed.; Cambridge University Press: Cambridge, UK, 1997; Chapter 1, pp. 36–40; Chapter 2, pp. 50–55; Chapter 3, pp. 105–117. [Google Scholar]
- Kawaguchi, T.; Ikeuchi, H.; Kayano, H.; Sawahara, Y.; Shiokawa, N. High-sensitivity HTS multi-channel receiver front-end for 900 MHz band mobile base station. In Proceedings of the 2017 European Radar Conference (EURAD), Nuremberg, Germany, 11–13 October 2017; pp. 449–452. [Google Scholar]
- Holdengreber, E.; Mizrahi, M.; Glassner, E.; Dahan, Y.; Castro, H.; Farber, E. Design and implementation of an rf coupler based on YBCO superconducting films. IEEE Trans. Appl. Superconduct. 2015, 25, 1–5. [Google Scholar] [CrossRef]
- Holdengreber, E.; Mizrahi, M.; Farber, E. Quasi-dynamical multi-channel coupler based on high temperature superconducting films. In Proceedings of the 2012 IEEE 27th Convention of Electrical and Electronics Engineers in Israel, Eliat, Israel, 14–17 October 2012; pp. 1–4. [Google Scholar]
- Huhtinen, H.; Ulriksson, J.; Malmivirta, M.; Järvinen, J.; Jha, R.; Awana, V.P.S.; Vasiliev, S.; Paturi, P. Deposition of YBCO thin films in view of microwave applications. IEEE Trans. Appl. Superconduct. 2017, 27, 1–5. [Google Scholar] [CrossRef]
- Jasim, S.E.; Jusoh, M.A.; Yeow, Y.K.; Jose, R. A high return loss of microwave bandpass filter using superconducting electrospun YBCO nanostructures. Prog. Electromagn. Res. C 2018, 81, 63–75. [Google Scholar] [CrossRef] [Green Version]
- Collado, C.; Mateu, J.; Menendez, O.; O’Callaghan, J.M. Nonlinear distortion in a 8-pole quasi-elliptic bandpass HTS filter for CDMA system. IEEE Trans. Appl. Supercond. 2005, 15, 992–995. [Google Scholar] [CrossRef]
- Gurevich, A.; Kubo, T. Surface impedance and optimum surface resistance of a superconductor with an imperfect surface. Phys. Rev. B 2017, 96, 184515. [Google Scholar] [CrossRef] [Green Version]
- Abu-Hudrouss, A.M.; Jayyousi, A.B.; Lancaster, M.J. Triple-band HTS filter using dual spiral resonators with capacitive-loading. IEEE Trans. Appl. Supercond. 2008, 18, 1728–1732. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, K.; Luo, Z. Development of integration HTSC linear phase filter with external equalization. IEEE Trans. Appl. Supercond. 2013, 23, 1501805. [Google Scholar] [CrossRef]
- Wang, K.; Otis, B.; Wang, Z. A 580-μ W 2.4-GHz ZigBee receiver front end with transformer coupling technique. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 174–176. [Google Scholar] [CrossRef]
- Han, J.; Kwon, K. RF receiver front-end employing IIP2-enhanced 25% duty-cycle quadrature passive mixer for advanced cellular applications. IEEE Access 2020, 8, 8166–8177. [Google Scholar] [CrossRef]
- Kim, Y.; Han, J.; Lee, J.S.; Jin, T.; Jang, P.; Shin, H.; Lee, J.; Cho, T.B. Power-efficient CMOS cellular RF receivers for carrier aggregation according to RF front-end configuration. IEEE Trans. Microw. Theory Tech. 2021, 69, 452–468. [Google Scholar] [CrossRef]
- Ginzberg, N.; Regev, D.; Tsodik, G.; Shilo, S.; Ezri, D.; Cohen, E. A full-duplex quadrature balanced RF front end with digital pre-PA self-interference cancellation. IEEE Trans. Microw. Theory Tech. 2019, 67, 5257–5267. [Google Scholar] [CrossRef]
- Son, K.Y.; Kim, T.; Kwon, K. A dual-band CMOS tunable duplexer employing a switchable autotransformer for highly integrated RF front ends. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 495–497. [Google Scholar] [CrossRef]
- Du, J.; Wang, J.; Zhang, T.; Bai, D.; Guo, Y.J.; He, Y. Demonstration of a portable HTS MMIC microwave receiver front-end. IEEE Trans. Appl. Supercond. 2015, 25, 1–4. [Google Scholar] [CrossRef]
- Akasegawa, A.; Yamanaka, K.; Nakanishi, T.; Kai, M. 4 GHz band HTS receiving-filters for a compact cryogenic receiver front-end. In Proceedings of the 2005 Asia-Pacific Microwave Conference Proceedings, Shuzou, China, 4–7 December 2005; p. 4. [Google Scholar]
- Liu, B.; Xu, M.; Yin, Y.; Song, K.; Yang, Y. Design of HTS microstrip filters for mobile communications application. In Proceedings of the 2011 China-Japan Joint Microwave Conference, Hangzhou, China, 20–22 April 2011; pp. 1–4. [Google Scholar]
- Bian, Y.; Guo, J.; Gao, C.; Li, C.; Li, H.; Wang, J.; He, Y. A miniaturized HTS microwave receiver front-end subsystem for radar and communication applications. Phys. C Supercond. 2010, 470, 617–621. [Google Scholar] [CrossRef]
- Komashko, V.A.; Popov, A.G.; Svetchnikov, V.L.; Pronin, A.V.; Melnikov, V.S.; Yu Galkin, A.; Pan, V.M.; Snead, C.L.; Suenaga, M. Critical current density of thin YBCO films on buffered sapphire substrates. Supercond. Sci. Technol. 2000, 13, 209–214. [Google Scholar] [CrossRef]
- Krupka, J.; Derzakowski, K.; Tobar, M.; Hartnett, J.; Geyer, R.G. Complex permittivity of some ultralow loss dielectric crystals at cryogenic temperatures. Meas. Sci. Technol. 1999, 10, 387–392. [Google Scholar] [CrossRef]
- Dahan, Y.; Holdengreber, E.; Mizrahi, M.; Schacham, S.; Farber, E. Multichannel transmitting system based on high-temperature superconducting phase shifter. IEEE Trans. Appl. Supercond. 2020, 30, 1–6. [Google Scholar] [CrossRef]
- Yang, W.I.; Lee, S.; Jung, H.S.; Kim, H.R.; Lee, S.Y. Homogeneity in the microwave surface resistance of large YBa2Cu3O7−δ superconductor films coated with Au. Electron. Mater. Lett. 2020, 16, 216–223. [Google Scholar] [CrossRef]
- Dahan, Y.; Holdengreber, E.; Glassner, E.; Sorkin, O.; Schacham, S.E.; Farber, E. Measurement of electrical properties of superconducting YBCO thin films in the VHF range. Materials 2021, 14, 3360. [Google Scholar] [CrossRef] [PubMed]
- Citron, N.; Holdengreber, E.; Sorkin, O.; Schacham, S.E.; Farber, E. High-Performance RF Balanced Microstrip Mixer Configuration for Cryogenic and Room Temperatures. Electronics 2022, 11, 102. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Sapphire width (substrate) | 0.43 mm |
YBCO width | 0.625 mm |
YBCO thickness | 330 nm |
Pole width | 8.25 mm |
Pole length | 10.125 mm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holdengreber, E.; Mizrahi, M.; Citron, N.; Schacham, S.E.; Farber, E. Very Low-Noise Figure HTSC RF Front-End. Electronics 2022, 11, 1270. https://doi.org/10.3390/electronics11081270
Holdengreber E, Mizrahi M, Citron N, Schacham SE, Farber E. Very Low-Noise Figure HTSC RF Front-End. Electronics. 2022; 11(8):1270. https://doi.org/10.3390/electronics11081270
Chicago/Turabian StyleHoldengreber, Eldad, Moshe Mizrahi, Noy Citron, Shmuel E. Schacham, and Eliyahu Farber. 2022. "Very Low-Noise Figure HTSC RF Front-End" Electronics 11, no. 8: 1270. https://doi.org/10.3390/electronics11081270
APA StyleHoldengreber, E., Mizrahi, M., Citron, N., Schacham, S. E., & Farber, E. (2022). Very Low-Noise Figure HTSC RF Front-End. Electronics, 11(8), 1270. https://doi.org/10.3390/electronics11081270