Improving Lane Detection Performance for Autonomous Vehicle Integrating Camera with Dual Light Sensors
Abstract
:1. Introduction
2. Related Work
2.1. General Methods for Vision-Based Lane Detection
2.2. Light Intensity Detection for Dual Light Sensor
3. Proposed Lane Detection Method with Illumination Information
3.1. Block Diagram for Proposed Lane Detection Method
3.2. Image Data Quality Enhancements
3.3. Edge Detection Improvement
3.4. Lane Tracking Improvement
4. Experimental Results
4.1. Design Results for Proposed Integrated Camera with Dual Light Sensor
4.2. Experiment Results
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Euro NCAP. Assessment Protocol—SA v9.1. Available online: https://cdn.euroncap.com/media/67254/euro-ncap-assessment-protocol-sa-v91.pdf (accessed on 31 March 2022).
- Martinez, F.J.; Toh, C.-K.; Cano, J.-C.; Calafate, C.T.; Manzoni, P. Emergency services in future intelligent transportation systems based on vehicular communication networks. IEEE Intell. Transp. Syst. Mag. 2010, 2, 6–20. [Google Scholar] [CrossRef]
- Narote, S.P.; Bhujbal, P.N.; Narote, A.S.; Dhane, D.M. A review of recent advances in lane detection and departure warning system. Pattern Recognit. 2018, 13, 216–234. [Google Scholar] [CrossRef]
- Hsiao, P.-Y.; Yeh, C.-W.; Huang, S.-S.; Fu, L.-C. A portable vision-based real-time lane departure warning system: Day and night. IEEE Trans. Veh. Technol. 2008, 58, 2089–2094. [Google Scholar] [CrossRef]
- Wang, J.-G.; Lin, C.-J.; Chen, S.-M. Applying fuzzy method to vision-based lane detection and departure warning system. Expert Syst. Appl. 2010, 37, 113–126. [Google Scholar] [CrossRef]
- Duan, J.; Zhang, Y.; Zheng, B. Lane line recognition algorithm based on threshold segmentation and continuity of lane line. In Proceedings of the 2016 2nd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 14–17 October 2016; pp. 680–684. [Google Scholar]
- Chai, Y.; Wei, S.J.; Li, X.C. The multi-scale Hough transform lane detection method based on the algorithm of Otsu and Canny. Adv. Mater. Res. 2014, 1042, 126–130. [Google Scholar] [CrossRef]
- Gaikwad, V.; Lokhande, S. Lane departure identification for advanced driver assistance. IEEE Trans. Intell. Transp. Syst. 2014, 16, 910–918. [Google Scholar] [CrossRef]
- Bläsing, F. Integrated Design and Functional Solution for a Camera Front-End in the Windshield Sensor Cluster. In Proceedings of the SAE World Congress & Exhibition, Detroit, MI, USA, 16–19 April 2007. No. 2007-01-0393. [Google Scholar]
- Mu, C.; Ma, X. Lane detection based on object segmentation and piecewise fitting. TELKOMNIKA Indones. J. Electr. Eng. 2014, 12, 3491–3500. [Google Scholar] [CrossRef]
- Tu, C.; Wyk, B.V.; Hamam, Y.; Djouani, K.; Du, S. Vehicle position monitoring using Hough transform. IERI Procedia 2013, 4, 316–322. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.-C.; Chang, C.-Y.; Lin, C.H. Lane-mark extraction for automobiles under complex conditions. Pattern Recognit. 2014, 47, 2756–2767. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, D.; Teoh, E.K. Lane detection using spline model. Pattern Recognit. Lett. 2000, 21, 677–689. [Google Scholar] [CrossRef]
- Fang, C.-Y.; Liang, J.-H.; Lo, C.-S.; Chen, S.-W. A real-time visual-based front-mounted vehicle collision warning system. In Proceedings of the 2013 IEEE Symposium on Computational Intelligence in Vehicles and Transportation Systems (CIVTS), Singapore, 16–19 April 2013; pp. 1–8. [Google Scholar]
- Yim, Y.U.; Oh, S.-Y. Three-feature based automatic lane detection algorithm (TFALDA) for autonomous driving. IEEE Trans. Intell. Transp. Syst. 2003, 4, 219–225. [Google Scholar]
- Jung, H.G.; Lee, Y.H.; Kang, H.J.; Kim, J. Sensor fusion-based lane detection for LKS+ ACC system. Int. J. Automot. Technol. 2009, 10, 219–228. [Google Scholar] [CrossRef]
- Bertozzi, M.; Broggi, A.; Conte, G.; Fascioli, A. Obstacle and lane detection on ARGO. In Proceedings of the Conference on Intelligent Transportation Systems, Boston, MA, USA, 12 November 1997; pp. 1010–1015. [Google Scholar]
- Aung, T.; Zaw, M.H. Video based lane departure warning system using Hough transform. In Proceedings of the International Conference on Advances in Engineering and Technology (ICAET), Singapore, 29–30 March 2014; pp. 29–30. [Google Scholar]
- Lee, J.W. A machine vision system for lane-departure detection. Comput. Vis. Image Underst. 2002, 86, 52–78. [Google Scholar] [CrossRef] [Green Version]
- Jung, C.R.; Kelber, C.R. Lane following and lane departure using a linear-parabolic model. Image Vis. Comput. 2005, 23, 1192–1202. [Google Scholar] [CrossRef]
- Taubel, G.; Sharma, R.; Yang, J.-S. An experimental study of a lane departure warning system based on the optical flow and Hough transform methods. WSEAS Trans. Syst. 2014, 13, 105–115. [Google Scholar]
- Borkar, A.; Hayes, M.; Smith, M.T.; Pankanti, S. A layered approach to robust lane detection at night. In Proceedings of the 2009 IEEE Workshop on Computational Intelligence in Vehicles and Vehicular Systems, Nashville, TN, USA, 30 March–2 April 2009; pp. 51–57. [Google Scholar]
- Zhao, K.; Meuter, M.; Nunn, C.; Müller, D.; Schneiders, S.M.; Pauli, J. A novel multi-lane detection and tracking system. In Proceedings of the 2012 IEEE Intelligent Vehicles Symposium, Madrid, Spain, 3–7 June 2012; pp. 1084–1089. [Google Scholar]
- Obradović, Ð.; Konjović, Z.; Pap, E.; Rudas, I. Linear fuzzy space based road lane model and detection. WSEAS Trans. Syst. 2014, 38, 37–47. [Google Scholar] [CrossRef]
- Lin, Q.; Han, Y.; Hahn, H. Real-time lane departure detection based on extended edge-linking algorithm. In Proceedings of the 2010 Second International Conference on Computer Research and Development, Kuala Lumpur, Malaysia, 7–10 May 2010; pp. 725–730. [Google Scholar]
- Borkar, A.; Hayes, M.; Smith, M.T. Robust lane detection and tracking with RANSAC and Kalman filter. In Proceedings of the 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, 7–10 November 2009; pp. 3261–3264. [Google Scholar]
- Kim, Z. Robust lane detection and tracking in challenging scenarios. IEEE Trans. Intell. Transp. Syst. 2008, 9, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Nashashibi, F. Robust real-time lane detection based on lane mark segment features and general a priori knowledge. In Proceedings of the 2011 IEEE International Conference on Robotics and Biomimetics, Karon Beach, Thailand, 7–11 December 2009; pp. 812–817. [Google Scholar]
- Kim, J.; Lee, M. Robust lane detection based on convolutional neural network and random sample consensus. In Proceedings of the International Conference on Neural Information Processing, Kuching, Malaysia, 3–6 November 2014; pp. 454–461. [Google Scholar]
- Zou, Q.; Jiang, H.; Dai, Q.; Yue, Y.; Chen, L.; Wang, Q. Robust lane detection from continuous driving scenes using deep neural networks. IEEE Trans. Veh. Technol. 2019, 69, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Neven, D.; De Brabandere, B.; Georgoulis, S.; Proesmans, M.; Van Gool, L. Towards end-to-end lane detection: An instance segmentation approach. In Proceedings of the 2018 IEEE intelligent vehicles symposium (IV), Changshu, China, 26–30 June 2018; pp. 286–291. [Google Scholar]
- Ghafoorian, M.; Nugteren, C.; Baka, N.; Booij, O.; Hofmann, M. EL-GAN: Embedding loss driven generative adversarial networks for lane detection. In Proceedings of the European Conference on Computer Vision (ECCV) Workshops, Munich, Germany, 8–14 September 2018; pp. 1–17. [Google Scholar]
- Marek, J.; Trah, H.P.; Suzuki, Y.; Yokomori, I. Sensors for Automotive Applications, 4th ed.; John Wiley & Sons: New York, NY, USA, 2006; pp. 462–473. [Google Scholar]
- Mouser Electronics. Dual Solar Sensor. Available online: http://www.mouser.com/ds/2/18/amphenol_datasheet_Dual%20Solar_SUF005A001-746349.pdf (accessed on 31 March 2022).
- Son, Y.S.; Kim, W.; Lee, S.-H.; Chung, C.C. Robust multirate control scheme with predictive virtual lanes for lane-keeping system of autonomous highway driving. IEEE Trans. Veh. Technol. 2014, 64, 3378–3391. [Google Scholar] [CrossRef]
- McCall, J.C.; Trivedi, M.M. Video-based lane estimation and tracking for driver assistance: Survey, system, and evaluation. IEEE Trans. Intell. Transp. Syst. 2006, 7, 20–37. [Google Scholar] [CrossRef] [Green Version]
- Redmill, K.A.; Upadhya, S.; Krishnamurthy, A.; Ozguner, U. A lane tracking system for intelligent vehicle applications. In Proceedings of the 2001 IEEE Intelligent Transportation Systems, Oakland, CA, USA, 25–29 August 2001; pp. 273–279. [Google Scholar]
- Choi, H.-C.; Park, J.-M.; Choi, W.-S.; Oh, S.-Y. Vision-based fusion of robust lane tracking and forward vehicle detection in a real driving environment. Int. J. Automot. Technol. 2012, 13, 653–669. [Google Scholar] [CrossRef]
- Euro NCAP. Test Protocol–LSS v4.0. Available online: https://cdn.euroncap.com/media/67895/euro-ncap-lss-test-protocol-v40.pdf (accessed on 31 March 2022).
Condition | Illumination (lux) |
---|---|
Sunlight | 107,527 |
Full Daylight | 10,752 |
Overcast Day | 1075 |
Very Dark Day | 107 |
Twilight | 10.8 |
Deep Twilight | 1.08 |
Full Moon | 0.108 |
Quarter Moon | 0.0108 |
Starlight | 0.0011 |
Overcast Night | 0.0001 |
Item | Parameter | Specification |
---|---|---|
CMOS Sensor | FOV (Field of view) | 52 (H) × 38 |
Resolution | 1280 × 800 (HD) | |
Frame rate | 30 fps | |
Dynamic range | 115 dB | |
Detection range | 90 m | |
Dual Light Sensor | Light intensity | 0 to 100,000 lux |
Sensor output current | 145 mA ± 15% | |
Angular response (elevation angle) | −90/90 | |
Angular response (azimuth) | 40 |
Perform. | Correct | False | False |
---|---|---|---|
Index | Detection | Negatives | Positives |
External situations | 59 | 1 | 0 |
Different lane types | 36 | 0 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.; Park, M.-k.; Park, M. Improving Lane Detection Performance for Autonomous Vehicle Integrating Camera with Dual Light Sensors. Electronics 2022, 11, 1474. https://doi.org/10.3390/electronics11091474
Lee Y, Park M-k, Park M. Improving Lane Detection Performance for Autonomous Vehicle Integrating Camera with Dual Light Sensors. Electronics. 2022; 11(9):1474. https://doi.org/10.3390/electronics11091474
Chicago/Turabian StyleLee, Yunhee, Min-ki Park, and Manbok Park. 2022. "Improving Lane Detection Performance for Autonomous Vehicle Integrating Camera with Dual Light Sensors" Electronics 11, no. 9: 1474. https://doi.org/10.3390/electronics11091474
APA StyleLee, Y., Park, M.-k., & Park, M. (2022). Improving Lane Detection Performance for Autonomous Vehicle Integrating Camera with Dual Light Sensors. Electronics, 11(9), 1474. https://doi.org/10.3390/electronics11091474