Triboelectric Nanogenerators for Ocean Wave Energy Harvesting: Unit Integration and Network Construction
Abstract
:1. Introduction
2. Integration of TENG Units in Point-Absorption Device
2.1. Topology Structure of TENG Units Integrated in Point-Absorption Device
2.1.1. Stacked Structure
2.1.2. Multidirectional Structure
2.1.3. Hybrid Structure
2.2. Circuit Connection of TENG Units Integrated in Point-Absorption Device
2.2.1. Direct Connection
2.2.2. Connection through Rectifier Bridges
2.2.3. Connection through Charge-Excitation Scheme
3. Integration of TENG Units in TENG Network
3.1. Topology Structure of TENG Network for Water Wave Energy Harvesting
3.1.1. One-Dimensional Chain Structure
3.1.2. Two-Dimensional Network Structure
3.1.3. Mechanical Connection
3.2. Circuit Connection of TENG Network for Water Wave Energy Harvesting
3.2.1. Connection through Rectifier Bridges
3.2.2. Connection through Charge-Excitation Scheme
3.2.3. Cost and Energy Loss of Circuit Connection
3.3. Output Performance of TENG Network
4. Summary and Perspectives
- Although some experimental studies on the topology structure of the TENG network have been carried out, the specific theoretical guidance is still lacking. Therefore, the mechanical model of the interaction between ocean water waves and the TENG networks is worth investigating. The theoretical model can effectively optimize the topological organization of the TENG networks;
- Current experiments of the TENG network are conducted under laboratory conditions, and it is difficult to simulate the real marine environment, such as water salinity and corrosion, and random wave frequency and amplitude. Solving the potential problems when the TENG networks work under the ocean waves is crucial to its commercialization;
- The complete linear superposition of the output performance of each unit in the TENG networks is difficult to achieve due to the energy consumption of the components, such as rectifier bridges and wires. Combining the recently proposed charge-supplement or energy-excitation schemes with the TENG networks for water wave energy harvesting is a feasible method to improve the energy-conversion efficiency;
- Regarding the commercialization of the TENG network, how to integrate the electrical energy generated by the TENG network into the commercial power gird is a considerable question. The output power of the TENG network under irregular ocean waves must be converted into high-voltage AC power, which is usually required for long-distance electrical energy transmission. Since the development of TENG networks is still at an exploratory stage, this problem has been rarely discussed;
- Cost control is also an important issue for the engineering applications of the large-scale TENG network, although researchers usually do not consider cost issues in the experimental studies. Cost control may be conducted from various perspectives, such as material selection, circuit simplification, and cable reduction.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jeff, T. Blue energy. Nature 2014, 508, 302–304. [Google Scholar]
- Painuly, J.P. Barriers to renewable energy penetration; a framework for analysis. Renew. Energy 2001, 24, 73–89. [Google Scholar] [CrossRef]
- Wang, X.; Niu, S.; Yin, Y.; Yi, F.; You, Z.; Wang, Z.L. Triboelectric Nanogenerator Based on Fully Enclosed Rolling Spherical Structure for Harvesting Low-Frequency Water Wave Energy. Adv. Energy Mater. 2015, 5, 1501467. [Google Scholar] [CrossRef]
- Wang, Z.L.; Jiang, T.; Xu, L. Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 2017, 39, 9–23. [Google Scholar] [CrossRef]
- Saadatnia, Z.; Asadi, E.; Askari, H.; Zu, J.; Esmailzadeh, E. Modeling and performance analysis of duck-shaped triboelectric and electromagnetic generators for water wave energy harvesting. Int. J. Energy Res. 2017, 41, 2392–2404. [Google Scholar] [CrossRef]
- Wang, Y.; Matin Nazar, A.; Wang, J.; Xia, K.; Wang, D.; Ji, X.; Jiao, P. Rolling Spherical Triboelectric Nanogenerators (RS-TENG) under Low-Frequency Ocean Wave Action. J. Mar. Sci. Eng. 2021, 10, 5. [Google Scholar] [CrossRef]
- Wei, X.; Zhao, Z.; Zhang, C.; Yuan, W.; Wu, Z.; Wang, J.; Wang, Z.L. All-Weather Droplet-Based Triboelectric Nanogenerator for Wave Energy Harvesting. ACS Nano 2021, 15, 13200–13208. [Google Scholar] [CrossRef]
- Xue, F.; Chen, L.; Li, C.; Ren, J.; Yu, J.; Hou, X.; Geng, W.; Mu, J.; He, J.; Chou, X. A static-dynamic energy harvester for a self-powered ocean environment monitoring application. Sci. China Technol. Sci. 2022, 65, 893–902. [Google Scholar] [CrossRef]
- Liang, X.; Liu, S.; Ren, Z.; Jiang, T.; Wang, Z.L. Self-Powered Intelligent Buoy Based on Triboelectric Nanogenerator for Water Level Alarming. Adv. Funct. Mater. 2022, 32, 2205313. [Google Scholar] [CrossRef]
- Li, R.; Li, Y.; Zhao, Y.; Li, Y.; Li, Y. Harvest of ocean energy by triboelectric generator technology. Appl. Phys. Rev. 2018, 5, 031303. [Google Scholar] [CrossRef]
- Huang, B.; Wang, P.; Wang, L.; Yang, S.; Wu, D. Recent advances in ocean wave energy harvesting by triboelectric nanogenerator: An overview. Nanotechnol. Rev. 2020, 9, 716–735. [Google Scholar] [CrossRef]
- Wang, H.; Xu, L.; Wang, Z. Advances of High-Performance Triboelectric Nanogenerators for Blue Energy Harvesting. Nanoenergy Adv. 2021, 1, 3. [Google Scholar] [CrossRef]
- Beeby, S.P.; Torah, R.N.; Tudor, M.J.; Glynne-Jones, P.; O’Donnell, T.; Saha, C.R.; Roy, S. A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 2007, 17, 1257–1265. [Google Scholar] [CrossRef]
- Chen, H.; Xing, C.; Li, Y.; Wang, J.; Xu, Y. Triboelectric nanogenerators for a macro-scale blue energy harvesting and self-powered marine environmental monitoring system. Sustain. Energy Fuels 2020, 4, 1063–1077. [Google Scholar] [CrossRef]
- Pang, Y.; Cao, Y.; Derakhshani, M.; Fang, Y.; Wang, Z.L.; Cao, C. Hybrid Energy-Harvesting Systems Based on Triboelectric Nanogenerators. Matter 2021, 4, 116–143. [Google Scholar] [CrossRef]
- Han, J.; Xu, N.; Yu, J.; Wang, Y.; Xiong, Y.; Wei, Y.; Wang, Z.L.; Sun, Q. Energy autonomous paper modules and functional circuits. Energy Environ. Sci. 2022, 15, 5069–5081. [Google Scholar] [CrossRef]
- Fan, F.R.; Tian, Z.Q.; Wang, Z.L. Flexible triboelectric generator! Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Wang, Z.L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82. [Google Scholar] [CrossRef]
- Wang, Z.L. Triboelectric Nanogenerator (TENG)—Sparking an Energy and Sensor Revolution. Adv. Energy Mater. 2020, 10, 2000137. [Google Scholar] [CrossRef] [Green Version]
- Bae, J.H.; Oh, H.J.; Song, J.; Kim, D.K.; Yeang, B.J.; Ko, J.H.; Kim, S.H.; Lee, W.; Lim, S.J. Nano- And Microfiber-Based Fully Fabric Triboelectric Nanogenerator for Wearable Devices. Polymers 2020, 12, 658. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Wen, Z.; Shi, J.; Jian, X.; Li, P.; Yeow, J.T.W.; Sun, X. Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication. Nat. Commun. 2020, 11, 4143. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.; Kim, J.S.; Jeong, Y.; Hwang, S.; Yoo, H.; Jeong, Y.; Gu, J.; Mahato, M.; Ko, J.; Jeon, S.; et al. All-Recyclable Triboelectric Nanogenerator for Sustainable Ocean Monitoring Systems. Adv. Energy Mater. 2022, 12, 2201341. [Google Scholar] [CrossRef]
- Chen, B.; Liu, D.; Jiang, T.; Tang, W.; Wang, Z.L. A Triboelectric Closed-Loop Sensing System for Authenticity Identification of Paper-Based Artworks. Adv. Mater. Technol. 2020, 5, 2000194. [Google Scholar] [CrossRef]
- Wang, Z.; Berbille, A.; Feng, Y.; Li, S.; Zhu, L.; Tang, W.; Wang, Z.L. Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders. Nat. Commun. 2022, 13, 130. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Xu, L.; Luo, J.; Yan, Y.; Jia, B.E.; Yang, X.; Gao, Y.; Wang, Z.L. Hybrid All-in-One Power Source Based on High-Performance Spherical Triboelectric Nanogenerators for Harvesting Environmental Energy. Adv. Energy Mater. 2020, 10, 2001669. [Google Scholar] [CrossRef]
- Zhu, G.; Zhou, Y.S.; Bai, P.; Meng, X.S.; Jing, Q.S.; Chen, J.; Wang, Z.L. A Shape-Adaptive Thin-Film-Based Approach for 50% High-Efficiency Energy Generation Through Micro-Grating Sliding Electrification. Adv. Mater. 2014, 26, 3788–3796. [Google Scholar] [CrossRef]
- Zou, H.; Guo, L.; Xue, H.; Zhang, Y.; Shen, X.; Liu, X.; Wang, P.; He, X.; Dai, G.; Jiang, P.; et al. Quantifying and understanding the triboelectric series of inorganic non-metallic materials. Nat. Commun. 2020, 11, 2093. [Google Scholar] [CrossRef]
- Zou, H.; Zhang, Y.; Guo, L.; Wang, P.; He, X.; Dai, G.; Zheng, H.; Chen, C.; Wang, A.C.; Xu, C.; et al. Quantifying the triboelectric series. Nat Commun 2019, 10, 1427. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.L. From contact electrification to triboelectric nanogenerators. Rep. Prog. Phys. 2021, 84, 096502. [Google Scholar] [CrossRef]
- Chen, X.; Gao, L.; Chen, J.; Lu, S.; Zhou, H.; Wang, T.; Wang, A.; Zhang, Z.; Guo, S.; Mu, X.; et al. A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and self-powered wireless sensing system. Nano Energy 2020, 69, 104440. [Google Scholar] [CrossRef]
- Feng, Y.; Jiang, T.; Liang, X.; An, J.; Wang, Z.L. Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra-low-frequency water wave energy. Appl. Phys. Rev. 2020, 7, 021401. [Google Scholar] [CrossRef]
- Hou, C.; Chen, T.; Li, Y.; Huang, M.; Shi, Q.; Liu, H.; Sun, L.; Lee, C. A rotational pendulum based electromagnetic/triboelectric hybrid-generator for ultra-low-frequency vibrations aiming at human motion and blue energy applications. Nano Energy 2019, 63, 103871. [Google Scholar] [CrossRef]
- Jiang, D.; Fan, Z.; Wang, H.; Xu, M.; Chen, G.; Song, Y.; Wang, Z.L. Triboelectric Nanogenerator Powered Electrowetting-on-Dielectric Actuator for Concealed Aquatic Microbots. ACS Nano 2020, 14, 15394–15402. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Zhang, N.; Zhou, Z.; Ye, S.; Wang, W.; Xu, W.; Zheng, H.; Song, Y.; Jiao, J.; Wang, Z.; et al. A bulk effect liquid-solid generator with 3D electrodes for wave energy harvesting. Nano Energy 2021, 87, 106218. [Google Scholar] [CrossRef]
- Wang, H.; Xu, L.; Bai, Y.; Wang, Z.L. Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling. Nat. Commun. 2020, 11, 4203. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L. Catch wave power in floating nets. Nature 2017, 542, 159–160. [Google Scholar] [CrossRef]
- Xiao, T.X.; Liang, X.; Jiang, T.; Xu, L.; Shao, J.J.; Nie, J.H.; Bai, Y.; Zhong, W.; Wang, Z.L. Spherical Triboelectric Nanogenerators Based on Spring-Assisted Multilayered Structure for Efficient Water Wave Energy Harvesting. Adv. Funct. Mater. 2018, 28, 1802634. [Google Scholar] [CrossRef]
- Xi, F.; Pang, Y.; Liu, G.; Wang, S.; Li, W.; Zhang, C.; Wang, Z.L. Self-powered intelligent buoy system by water wave energy for sustainable and autonomous wireless sensing and data transmission. Nano Energy 2019, 61, 1–9. [Google Scholar] [CrossRef]
- Xu, M.; Zhao, T.; Wang, C.; Zhang, S.L.; Li, Z.; Pan, X.; Wang, Z.L. High Power Density Tower-like Triboelectric Nanogenerator for Harvesting Arbitrary Directional Water Wave Energy. ACS Nano 2019, 13, 1932–1939. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, C.; Xi, J.; Han, X.; Li, J.; Han, S.-T.; Gao, W.; Pan, C. Spherical Triboelectric Nanogenerator with Dense Point Contacts for Harvesting Multidirectional Water Wave and Vibration Energy. ACS Energy Lett. 2021, 6, 2809–2816. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, C.; Wang, W.; Xu, R.; Chen, P.; Du, T.; Xue, T.; Wang, Z.; Xu, M. A Stackable Triboelectric Nanogenerator for Wave-Driven Marine Buoys. Nanomaterials 2022, 12, 594. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.Y.; Kim, H.S.; Kong, D.S.; Choi, M.; Kim, H.B.; Lee, J.-H.; Murillo, G.; Lee, M.; Kim, S.S.; Jung, J.H. Floating buoy-based triboelectric nanogenerator for an effective vibrational energy harvesting from irregular and random water waves in wild sea. Nano Energy 2018, 45, 247–254. [Google Scholar] [CrossRef]
- Wen, H.; Yang, P.; Liu, G.; Xu, S.; Yao, H.; Li, W.; Qu, H.; Ding, J.; Li, J.; Wan, L. Flower-like triboelectric nanogenerator for blue energy harvesting with six degrees of freedom. Nano Energy 2022, 93, 106796. [Google Scholar] [CrossRef]
- Qu, Z.; Huang, M.; Chen, C.; An, Y.; Liu, H.; Zhang, Q.; Wang, X.; Liu, Y.; Yin, W.; Li, X. Spherical Triboelectric Nanogenerator Based on Eccentric Structure for Omnidirectional Low Frequency Water Wave Energy Harvesting. Adv. Funct. Mater. 2022, 32, 2202048. [Google Scholar] [CrossRef]
- Liang, X.; Jiang, T.; Liu, G.; Feng, Y.; Zhang, C.; Wang, Z.L. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ. Sci. 2020, 13, 277–285. [Google Scholar] [CrossRef]
- Wu, Z.; Guo, H.; Ding, W.; Wang, Y.C.; Zhang, L.; Wang, Z.L. A Hybridized Triboelectric-Electromagnetic Water Wave Energy Harvester Based on a Magnetic Sphere. ACS Nano 2019, 13, 2349–2356. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Guo, H.; Xu, S.; Hu, C.; Wang, Z.L. Oblate Spheroidal Triboelectric Nanogenerator for All-Weather Blue Energy Harvesting. Adv. Energy Mater. 2019, 9, 1900801. [Google Scholar] [CrossRef]
- Gao, L.; Lu, S.; Xie, W.; Chen, X.; Wu, L.; Wang, T.; Wang, A.; Yue, C.; Tong, D.; Lei, W.; et al. A self-powered and self-functional tracking system based on triboelectric-electromagnetic hybridized blue energy harvesting module. Nano Energy 2020, 72, 104684. [Google Scholar] [CrossRef]
- Liang, X.; Liu, Z.; Feng, Y.; Han, J.; Li, L.; An, J.; Chen, P.; Jiang, T.; Wang, Z.L. Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting. Nano Energy 2021, 83, 105836. [Google Scholar] [CrossRef]
- Tian, S.; Wei, X.; Lai, L.; Li, B.; Wu, Z.; Dai, Y. Frequency modulated hybrid nanogenerator for efficient water wave energy harvesting. Nano Energy 2022, 102, 107669. [Google Scholar] [CrossRef]
- Zhang, S.L.; Xu, M.; Zhang, C.; Wang, Y.-C.; Zou, H.; He, X.; Wang, Z.; Wang, Z.L. Rationally designed sea snake structure based triboelectric nanogenerators for effectively and efficiently harvesting ocean wave energy with minimized water screening effect. Nano Energy 2018, 48, 421–429. [Google Scholar] [CrossRef]
- Yuan, W.; Zhang, B.; Zhang, C.; Yang, O.; Liu, Y.; He, L.; Zhou, L.; Zhao, Z.; Wang, J.; Wang, Z.L. Anaconda-shaped spiral multi-layered triboelectric nanogenerators with ultra-high space efficiency for wave energy harvesting. One Earth 2022, 5, 1055–1063. [Google Scholar] [CrossRef]
- Bai, Y.; Xu, L.; He, C.; Zhu, L.; Yang, X.; Jiang, T.; Nie, J.; Zhong, W.; Wang, Z.L. High-performance triboelectric nanogenerators for self-powered, in-situ and real-time water quality mapping. Nano Energy 2019, 66, 104117. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Li, Z.L.; Fan, X.; Zi, Y.L.; Jing, Q.S.; Guo, H.Y.; Wen, Z.; Pradel, K.C.; Niu, S.M.; et al. Networks of Triboelectric Nanogenerators for Harvesting Water Wave Energy: A Potential Approach toward Blue Energy. ACS Nano 2015, 9, 3324–3331. [Google Scholar] [CrossRef]
- Feng, Y.; Han, J.; Xu, M.; Liang, X.; Jiang, T.; Li, H.; Wang, Z.L. Blue Energy for Green Hydrogen Fuel: A Self-Powered Electrochemical Conversion System Driven by Triboelectric Nanogenerators. Adv. Energy Mater. 2021, 12, 2103143. [Google Scholar] [CrossRef]
- Liang, X.; Jiang, T.; Liu, G.; Xiao, T.; Xu, L.; Li, W.; Xi, F.; Zhang, C.; Wang, Z.L. Triboelectric Nanogenerator Networks Integrated with Power Management Module for Water Wave Energy Harvesting. Adv. Funct. Mater. 2019, 29, 1807241. [Google Scholar] [CrossRef]
- Xu, L.; Jiang, T.; Lin, P.; Shao, J.J.; He, C.; Zhong, W.; Chen, X.Y.; Wang, Z.L. Coupled Triboelectric Nanogenerator Networks for Efficient Water Wave Energy Harvesting. ACS Nano 2018, 12, 1849–1858. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Xu, L.; Lin, P.; Zhong, W.; Bai, Y.; Luo, J.; Chen, J.; Wang, Z.L. Macroscopic self-assembly network of encapsulated high-performance triboelectric nanogenerators for water wave energy harvesting. Nano Energy 2019, 60, 404–412. [Google Scholar] [CrossRef]
- Wang, J.Y.; Pan, L.; Guo, H.Y.; Zhang, B.B.; Zhang, R.R.; Wu, Z.Y.; Wu, C.S.; Yang, L.J.; Liao, R.J.; Wang, Z.L. Rational Structure Optimized Hybrid Nanogenerator for Highly Efficient Water Wave Energy Harvesting. Adv. Energy Mater. 2019, 9, 1802892. [Google Scholar] [CrossRef]
- Liu, G.; Xiao, L.; Chen, C.; Liu, W.; Pu, X.; Wu, Z.; Hu, C.; Wang, Z.L. Power cables for triboelectric nanogenerator networks for large-scale blue energy harvesting. Nano Energy 2020, 75, 104975. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, B.; Guo, H.; Wu, Z.; Zou, H.; Yang, J.; Wang, Z.L. Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy 2019, 64, 103908. [Google Scholar] [CrossRef]
- Xu, L.; Bu, T.Z.; Yang, X.D.; Zhang, C.; Wang, Z.L. Ultrahigh charge density realized by charge pumping at ambient conditions for triboelectric nanogenerators. Nano Energy 2018, 49, 625–633. [Google Scholar] [CrossRef]
- Cheng, L.; Xu, Q.; Zheng, Y.; Jia, X.; Qin, Y. A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed. Nat. Commun. 2018, 9, 3773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, W.; Liu, W.; Chen, J.; Wang, Z.; Liu, Y.; Pu, X.; Yang, H.; Tang, Q.; Yang, H.; Guo, H.; et al. Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nat Commun 2020, 11, 4277. [Google Scholar] [CrossRef]
- An, J.; Wang, Z.M.; Jiang, T.; Liang, X.; Wang, Z.L. Whirling-Folded Triboelectric Nanogenerator with High Average Power for Water Wave Energy Harvesting. Adv. Funct. Mater. 2019, 29, 1904867. [Google Scholar] [CrossRef]
- Liang, X.; Jiang, T.; Feng, Y.W.; Lu, P.J.; An, J.; Wang, Z.L. Triboelectric Nanogenerator Network Integrated with Charge Excitation Circuit for Effective Water Wave Energy Harvesting. Adv. Energy Mater. 2020, 10, 2002123. [Google Scholar] [CrossRef]
- Liu, W.; Xu, L.; Liu, G.; Yang, H.; Bu, T.; Fu, X.; Xu, S.; Fang, C.; Zhang, C. Network Topology Optimization of Triboelectric Nanogenerators for Effectively Harvesting Ocean Wave Energy. iScience 2020, 23, 101848. [Google Scholar] [CrossRef]
- Liu, W.; Xu, L.; Bu, T.; Yang, H.; Liu, G.; Li, W.; Pang, Y.; Hu, C.; Zhang, C.; Cheng, T. Torus structured triboelectric nanogenerator array for water wave energy harvesting. Nano Energy 2019, 58, 499–507. [Google Scholar] [CrossRef]
Network Topology | Unit Structure | Unit Number | Unit Size | Circuit Connection | Peak Power (mW) | Peak Power Density (W/m3) | Charging Speed | Test Environment | Year | Refs. |
---|---|---|---|---|---|---|---|---|---|---|
Square | Spring-assisted multilayered structure | 4 | Spherical unit diameter 10 cm | Rectifier bridges | 15.97 | 7.62 | 120 s 0.74 V (1 mF) | Water waves | 2018 | [37] |
Square | Ball-shell structure | 16 | Spherical unit diameter 7 cm | Rectifier bridges | 12.84 | 4.47 | 23 s 3.00 V (44 μF) | Impact agitation | 2018 | [57] |
Chain | Sea snake structure | 3 | Cuboid unit length 6.4 cm, width 5.1 cm, height 10.1 cm | Rectifier bridges | - | - | 600 s 2.00 V (100 μF) | Water waves | 2018 | [51] |
Rectangle | Pendulum structure | 6 | Spherical unit diameter 12 cm | Rectifier bridges | - | - | 780 s 3.30 V (100 μF) | Water waves | 2019 | [61] |
Square | Torus structure | 16 | Torus unit major diameter 7 cm | Rectifier bridges | - | - | 300 s 1.50 V (47 μF) | Water waves | 2019 | [68] |
Rectangle | 3D electrode structure | 18 | Spherical unit diameter 8 cm | Rectifier bridges | 34.60 | 7.16 | 21 s 1.33 V (216 μF) | Water waves | 2019 | [58] |
Hexagon | Spring-assisted multilayered structure | 7 | Spherical unit diameter 10 cm | Rectifier bridges | 12.20 | 3.33 | 60 s 2.54 V (1 mF) | Water waves | 2019 | [56] |
Rectangle | Swing structure | 6 | Cylindrical unit diameter 10 cm, thickness 5 cm | Rectifier bridges | - | - | 200 s 2.20 V (100 μF) | Water waves | 2020 | [31] |
Hexagon | Spring-assisted multilayered structure | 7 | Spherical unit diameter 10 cm | Charge excitation scheme | 24.60 | 6.71 | 30 s 1.80 V (4.7 mF) | Water waves | 2020 | [66] |
Square | Spring-assisted swing structure | 4 | Spherical unit diameter 12 cm | Charge excitation scheme | 16.64 | 4.60 | 30 s 1.80 V (2.2 mF) | Water waves | 2021 | [49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, X.; Liu, S.; Yang, H.; Jiang, T. Triboelectric Nanogenerators for Ocean Wave Energy Harvesting: Unit Integration and Network Construction. Electronics 2023, 12, 225. https://doi.org/10.3390/electronics12010225
Liang X, Liu S, Yang H, Jiang T. Triboelectric Nanogenerators for Ocean Wave Energy Harvesting: Unit Integration and Network Construction. Electronics. 2023; 12(1):225. https://doi.org/10.3390/electronics12010225
Chicago/Turabian StyleLiang, Xi, Shijie Liu, Hongbo Yang, and Tao Jiang. 2023. "Triboelectric Nanogenerators for Ocean Wave Energy Harvesting: Unit Integration and Network Construction" Electronics 12, no. 1: 225. https://doi.org/10.3390/electronics12010225
APA StyleLiang, X., Liu, S., Yang, H., & Jiang, T. (2023). Triboelectric Nanogenerators for Ocean Wave Energy Harvesting: Unit Integration and Network Construction. Electronics, 12(1), 225. https://doi.org/10.3390/electronics12010225