Data Locality in High Performance Computing, Big Data, and Converged Systems: An Analysis of the Cutting Edge and a Future System Architecture
Abstract
:1. Introduction
2. Related Works: Case for This Paper
2.1. Big Data
2.2. HPC
2.3. HPC and Big Data Convergence
3. Data Locality in HPC Environments
3.1. Application Perspectives
3.2. Programming Languages, Compiler, and Libraries
3.3. Cache Optimization Techniques
3.3.1. Data Access Optimization
3.3.2. Data Layout Optimizations
3.3.3. Cache Bypassing
3.4. Locality-Aware Scheduling and Load-Balancing
3.5. Bulk Synchronous Processing (BSP)
3.6. Out-of-Core Computing
3.7. Parallelism Mapping
3.7.1. Message Passing Interface Support for Process Mapping
3.7.2. Algorithmic Approaches for Process Mapping
3.7.3. Machine Learning-Based Parallelism Mapping
3.8. In Situ Data Analysis
3.8.1. In Situ Compression
3.8.2. Use of Indexing for In Situ Data Analysis
3.8.3. In Situ Visualization
3.8.4. In Situ Feature Selection
4. Data Locality in Big Data Environments
4.1. Parallel Programming Models
4.1.1. Batch Processing
4.1.2. Iterative
4.1.3. Language Support
4.1.4. Locality-Aware Partitioning
4.2. Data Placement
4.2.1. Locality-Aware Data Placement
4.2.2. Locality-Aware Data Placement in a Heterogeneous Environment
4.3. Scheduling and Load Balancing
4.3.1. Locality-Aware Scheduling and Load Balancing
4.3.2. Locality-Aware Scheduling and Load Balancing in a Heterogeneous Environment
4.3.3. Adaptive Scheduling
4.3.4. Delay Scheduling
4.4. In-Memory Computations
4.4.1. Registers and Cache-Centric Optimizations
4.4.2. Non-Uniform Memory Access (NUMA)
4.4.3. NVRAM
4.4.4. In-Memory Data Processing Systems
4.4.5. In-Memory Data Storage Systems
5. Data Locality in Converged HPC and Big Data Environments
5.1. MPI with Map-Reduce Frameworks
5.2. Map-Reduce Frameworks with High-Performance Interconnects
5.3. Map-Reduce-like Framework for In Situ Analysis
6. Challenges, Opportunities, and Future Directions
6.1. Programming Paradigms
6.2. Programming Models and Language Support
6.3. Programming Abstractions
6.4. Innovations in Data Layout Strategies
6.5. Locality-Aware Scheduling
6.6. Software Hardware Co-Design
6.7. Innovations in Memory and Storage Technologies
6.8. High-Speed Interconnects
7. Proposed Future HPC and Big Data Converged System Architecture
Limitations of Proposed Solution
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, M.; Mao, S.; Liu, Y. Big Data: A Survey. Mob. Netw. Appl. 2014, 19, 171–209. [Google Scholar] [CrossRef]
- Farber, R. The Convergence of Big Data and Extreme-Scale HPC, HPC Wire. 2018. Available online: https://www.hpcwire.com/2018/08/31/the-convergence-of-big-data-and-extreme-scale-hpc/ (accessed on 1 November 2022).
- Alam, F.; Almaghthawi, A.; Katib, I.; Albeshri, A.; Mehmood, R. iResponse: An AI and IoT-Enabled Framework for Autonomous COVID-19 Pandemic Management. Sustainability 2021, 13, 3797. [Google Scholar] [CrossRef]
- Alomari, E.; Katib, I.; Albeshri, A.; Yigitcanlar, T.; Mehmood, R. Iktishaf+: A Big Data Tool with Automatic Labeling for Road Traffic Social Sensing and Event Detection Using Distributed Machine Learning. Sensors 2021, 21, 2993. [Google Scholar] [CrossRef] [PubMed]
- Alkhayat, G.; Hasan, S.H.; Mehmood, R. SENERGY: A Novel Deep Learning-Based Auto-Selective Approach and Tool for Solar Energy Forecasting. Energies 2022, 15, 6659. [Google Scholar] [CrossRef]
- Alahmari, N.; Alswedani, S.; Alzahrani, A.; Katib, I.; Albeshri, A.; Mehmood, R. Musawah: A Data-Driven AI Approach and Tool to Co-Create Healthcare Services with a Case Study on Cancer Disease in Saudi Arabia. Sustainability 2022, 14, 3313. [Google Scholar] [CrossRef]
- Alswedani, S.; Mehmood, R.; Katib, I. Sustainable Participatory Governance: Data-Driven Discovery of Parameters for Planning Online and In-Class Education in Saudi Arabia During COVID-19. Front. Sustain. Cities 2022, 4, 97. [Google Scholar] [CrossRef]
- Alaql, A.A.; AlQurashi, F.; Mehmood, R. Data-Driven Deep Journalism to Discover Age Dynamics in Multi-Generational Labour Markets from LinkedIn Media. Mathmatics & Computer Science. Preprints 2022, 2022100472. [Google Scholar] [CrossRef]
- Alqahtani, E.; Janbi, N.; Sharaf, S.; Mehmood, R. Smart Homes and Families to Enable Sustainable Societies: A Data-Driven Approach for Multi-Perspective Parameter Discovery Using BERT Modelling. Sustainability 2022, 14, 13534. [Google Scholar] [CrossRef]
- Janbi, N.; Mehmood, R.; Katib, I.; Albeshri, A.; Corchado, J.M.; Yigitcanlar, T. Imtidad: A Reference Architecture and a Case Study on Developing Distributed AI Services for Skin Disease Diagnosis over Cloud, Fog and Edge. Sensors 2022, 22, 1854. [Google Scholar] [CrossRef]
- Arfat, Y.; Usman, S.; Mehmood, R.; Katib, I. Big data tools, technologies, and applications: A survey. In Smart Infra-Structure and Applications Foundations for Smarter Cities and Societies; Springer: Cham, Switzerland, 2020; pp. 453–490. [Google Scholar]
- Mehmood, R.; Sheikh, A.; Catlett, C.; Chlamtac, I. Editorial: Smart Societies, Infrastructure, Systems, Technologies, and Applications. Mob. Netw. Appl. 2022, 1, 1–5. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Butler, L.; Windle, E.; DeSouza, K.C.; Mehmood, R.; Corchado, J.M. Can Building “Artificially Intelligent Cities” Safeguard Humanity from Natural Disasters, Pandemics, and Other Catastrophes? An Urban Scholar’s Perspective. Sensors 2020, 20, 2988. [Google Scholar] [CrossRef] [PubMed]
- Yigitcanlar, T.; Corchado, J.M.; Mehmood, R.; Li, R.Y.M.; Mossberger, K.; Desouza, K. Responsible Urban Innovation with Local Government Artificial Intelligence (AI): A Conceptual Framework and Research Agenda. J. Open Innov. Technol. Mark. Complex. 2021, 7, 71. [Google Scholar] [CrossRef]
- Yigitcanlar, T.; Mehmood, R.; Corchado, J.M. Green Artificial Intelligence: Towards an Efficient, Sustainable and Equitable Technology for Smart Cities and Futures. Sustainability 2021, 13, 8952. [Google Scholar] [CrossRef]
- Alsaigh, R.; Mehmood, R.; Katib, I. AI Explainability and Governance in Smart Energy Systems: A Review. arXiv 2022, arXiv:arXiv:2211.00069. [Google Scholar] [CrossRef]
- Schwartz, R.; Dodge, J.; Smith, N.A.; Etzioni, O. Green AI. Commun. ACM 2020, 63, 54–63. [Google Scholar] [CrossRef]
- Reed, D.A.; Dongarra, J. Exascale computing and big data. Commun. ACM 2015, 58, 56–68. [Google Scholar] [CrossRef]
- Elia, D.; Fiore, S.; Aloisio, G. Towards HPC and Big Data Analytics Convergence: Design and Experimental Evaluation of a HPDA Framework for eScience at Scale. IEEE Access 2021, 9, 73307–73326. [Google Scholar] [CrossRef]
- Brox, P.; Garcia-Blas, J.; Singh, D.E.; Carretero, J. DICE: Generic Data Abstraction for Enhancing the Convergence of HPC and Big Data. In Proceedings of the Latin American High Performance Computing Conference, Guadalajara, Mexico, 6-8 October 2021; pp. 106–119. [Google Scholar] [CrossRef]
- Hachinger, S.; Martinovič, J.; Terzo, O.; Levrier, M.; Scionti, A.; Magarielli, D.; Goubier, T.; Parodi, A.; Harsh, P.; Apopei, F.-I.; et al. HPC-Cloud-Big Data Convergent Architectures and Research Data Management: The LEXIS Approach. Int. Symp. Grids Clouds 2021, 378, 4. [Google Scholar] [CrossRef]
- Karagiorgou, S.; Terzo, O.; Martinovič, J. CYBELE: On the Convergence of HPC, Big Data Services, and AI Technologies. In HPC, Big Data, and AI Convergence Towards Exascale; CRC Press: Boca Raton, FL, USA, 2022; pp. 240–254. [Google Scholar]
- Tzenetopoulos, A.; Masouros, D.; Koliogeorgi, K.; Xydis, S.; Soudris, D.; Chazapis, A.; Kozanitis, C.; Bilas, A.; Pinto, C.; Nguyen, H.; et al. EVOLVE: Towards converging big-data, high-performance and cloud-computing worlds. In Proceedings of the 2022 Design, Automation\& Test in Europe Conference\& Exhibition (DATE), Antwerp, Belgium, 14–23 March 2022; pp. 975–980. [Google Scholar]
- Ejarque, J.; Badia, R.M.; Albertin, L.; Aloisio, G.; Baglione, E.; Becerra, Y.; Boschert, S.; Berlin, J.R.; Anca, A.D.; Elia, D.; et al. Enabling dynamic and intelligent workflows for HPC, data analytics, and AI convergence. Futur. Gener. Comput. Syst. 2022, 134, 414–429. [Google Scholar] [CrossRef]
- Sukumar, S.R.; Balma, J.A.; Rickett, C.D.; Maschhoff, K.J.; Landman, J.; Yates, C.R.; Chittiboyina, A.G.; Peterson, Y.K.; Vose, A.; Byler, K.; et al. The Convergence of HPC, AI and Big Data in Rapid-Response to the COVID-19 Pandemic. In Smoky Mountains Computational Sciences and Engineering Conference; Springer: Cham, Switzerland, 2021; pp. 157–172. [Google Scholar]
- Scionti, A.; Viviani, P.; Vitali, G.; Vercellino, C.; Terzo, O. Enabling the HPC and Artificial Intelligence Cross-Stack Con-vergence at the Exascale Level. In HPC, Big Data, and AI Convergence Towards Exascale; CRC Press: Boca Raton, FL, USA, 2022; pp. 37–58. [Google Scholar]
- Unat, D.; Dubey, A.; Hoefler, T.; Shalf, J.; Abraham, M.; Bianco, M.; Chamberlain, B.L.; Cledat, R.; Edwards, H.C.; Finkel, H.; et al. Trends in Data Locality Abstractions for HPC Systems. IEEE Trans. Parallel Distrib. Syst. 2017, 28, 3007–3020. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, T.; Albeshri, A.; Katib, I.; Mehmood, R. UbiPriSEQ—Deep Reinforcement Learning to Manage Privacy, Security, Energy, and QoS in 5G IoT HetNets. Appl. Sci. 2020, 10, 7120. [Google Scholar] [CrossRef]
- Janbi, N.; Katib, I.; Albeshri, A.; Mehmood, R. Distributed Artificial Intelligence-as-a-Service (DAIaaS) for Smarter IoE and 6G Environments. Sensors 2020, 20, 5796. [Google Scholar] [CrossRef] [PubMed]
- Caragea, C.; Manegold, S. Memory Locality. In Encyclopedia of Database Systems; Springer: Boston, MA, USA, 2009; pp. 1713–1714. [Google Scholar]
- Snir, M.; Yu, J. On the Theory of Spatial and Temporal Locality; University of Illinois ar Urbana-Champaign: Urbana, IL, USA, 2005. [Google Scholar]
- Caíno-Lores, S.; Carretero, J. A Survey on Data-Centric and Data-Aware Techniques for Large Scale Infrastructures. Int. J. Comput. Inf. Eng. 2016, 10, 517–523. [Google Scholar]
- Zhang, H.; Chen, G.; Ooi, B.C.; Tan, K.-L.; Zhang, M. In-Memory Big Data Management and Processing: A Survey. IEEE Trans. Knowl. Data Eng. 2015, 27, 1920–1948. [Google Scholar] [CrossRef]
- Dolev, S.; Florissi, P.; Gudes, E.; Sharma, S.; Singer, I. A Survey on Geographically Distributed Big-Data Processing Using MapReduce. IEEE Trans. Big Data 2017, 5, 60–80. [Google Scholar] [CrossRef] [Green Version]
- Senthilkumar, M.; Ilango, P. A Survey on Job Scheduling in Big Data. Cybern. Inf. Technol. 2016, 16, 35–51. [Google Scholar] [CrossRef] [Green Version]
- Idris, M.; Hussain, S.; Ali, M.; Abdulali, A.; Siddiqi, M.H.; Kang, B.H.; Lee, S. Context-aware scheduling in MapReduce: A compact review. Concurr. Comput. Pr. Exp. 2015, 27, 5332–5349. [Google Scholar] [CrossRef]
- Mozakka, M.; Esfahani, F.S.; Nadimi, M.H. Survey on Adaptive Job Schedulers in Mapreduce. J. Theor. Appl. Inf. Technol. 2014, 31, 661–669. [Google Scholar]
- Nagina; Dhingra, S. Scheduling Algorithms in Big Data: A Survey. Int. J. Eng. Comput. Sci. 2016, 5, 11737–17743. [Google Scholar]
- Kasiviswanath, N.; Reddy, P.C. A Survey on Big Data Management and Job Scheduling. Int. J. Comput. Appl. 2015, 130, 41–49. [Google Scholar]
- Akilandeswari, H.; Srimathi, P. Survey on Task Scheduling in Cloud Environment. IJCTA 2016, 9, 693–698. [Google Scholar] [CrossRef] [Green Version]
- Hoefler, T.; Jeannot, E.; Mercier, G.; Jeannot, E.; Žilinskas, J. High-Performance Computing on Complex Environments; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; pp. 73–94. [Google Scholar]
- Singh, A.K.; Shafique, M.; Kumar, A.; Henkel, J. Mapping on multi/many-core systems. In Proceedings of the 50th Annual Design Automation Conference on—DAC ’13, New York, NY, USA, 29 May 2013–7 June 2013; p. 1. [Google Scholar] [CrossRef]
- Asaadi, H.; Khaldi, D.; Chapman, B. A Comparative Survey of the HPC and Big Data Paradigms: Analysis and Experiments. In Proceedings of the 2016 IEEE International Conference on Cluster Computing (CLUSTER), Taipei, Taiwan, 12–16 September 2016; pp. 423–432. [Google Scholar] [CrossRef]
- Jha, S.; Qiu, J.; Luckow, A.; Mantha, P.; Fox, G.C. A Tale of Two Data-Intensive Paradigms: Applications, Abstractions, and Architectures. In Proceedings of the 2014 IEEE International Congress on Big Data, Anchorage, AK, USA, 27 June–2 July 2014; pp. 645–652. [Google Scholar] [CrossRef] [Green Version]
- Asch, M.; Moore, T.; Badia, R.M.; Beck, M.; Beckman, P.; Bidot, T.; Bodin, F.; Cappello, F.; Choudhary, A.; De Supinski, B.; et al. Big data and extreme-scale computing. Int. J. High Perform. Comput. Appl. 2018, 32, 435–479. [Google Scholar] [CrossRef]
- Yin, F.; Shi, F. A Comparative Survey of Big Data Computing and HPC: From a Parallel Programming Model to a Cluster Architecture. Int. J. Parallel Program. 2021, 50, 27–64. [Google Scholar] [CrossRef]
- Golasowski, M.; Martinovič, J.; Levrier, M.; Hachinger, S.; Karagiorgou, S.; Papapostolou, A.; Mouzakitis, S.; Tsapelas, I.; Caballero, M.; Aldinucci, M.; et al. Toward the Convergence of High-Performance Computing, Cloud, and Big Data Domains. In HPC, Big Data, and AI Convergence Towards Exascale; CRC Press: Boca Raton, FL, USA, 2022; pp. 1–16. [Google Scholar]
- Usman, S.; Mehmood, R.; Katib, I. Big Data and HPC Convergence for Smart Infrastructures: A Review and Proposed Architecture. In Smart Infrastructure and Applications Foundations for Smarter Cities and Societies; Springer: Cham, Switzerland, 2020; pp. 561–586. [Google Scholar]
- Usman, S.; Mehmood, R.; Katib, I. Big Data and HPC Convergence: The Cutting Edge and Outlook. In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering; Springer: Cham, Switzerland, 2018; Volume 224, pp. 11–26. [Google Scholar] [CrossRef]
- Usman, S.; Mehmood, R.; Katib, I. HPC & Big Data Convergence: The Cutting Edge & Outlook, Poster presented. Proceedings of the first Middle East meeting of the Intel Extreme Performance Users Group, IntelXPUG, King Abdullah University of Science and Technology (KAUST), Jeddah, Saudi Arabia, 22–25 April 2018; Available online: https://epostersonline.com/ixpug-me2018/node/19 (accessed on 1 November 2022).
- Alotaibi, H.; Alsolami, F.; Abozinadah, E.; Mehmood, R. TAWSEEM: A Deep-Learning-Based Tool for Estimating the Number of Unknown Contributors in DNA Profiling. Electronics 2022, 11, 548. [Google Scholar] [CrossRef]
- Althumairi, A. ‘Governmental Communication’ launches the visual identity of the ‘We are All Responsible’ initiative to confront ‘COVID 19’. Int. J. Environ. Res. Public Health 2021, 18, 282. [Google Scholar] [CrossRef]
- Muhammed, T.; Mehmood, R.; Albeshri, A.; Alsolami, F. HPC-Smart Infrastructures: A Review and Outlook on Performance Analysis Methods and Tools; Springer: Cham, Switzerland, 2020; pp. 427–451. [Google Scholar]
- Aqib, M.; Mehmood, R.; Alzahrani, A.; Katib, I.; Albeshri, A.; Altowaijri, S.M. Smarter Traffic Prediction Using Big Data, In-Memory Computing, Deep Learning and GPUs. Sensors 2019, 19, 2206. [Google Scholar] [CrossRef] [Green Version]
- Muhammed, T.; Mehmood, R.; Albeshri, A.; Katib, I. UbeHealth: A Personalized Ubiquitous Cloud and Edge-Enabled Networked Healthcare System for Smart Cities. IEEE Access 2018, 6, 32258–32285. [Google Scholar] [CrossRef]
- AlAhmadi, S.; Muhammed, T.; Mehmood, R.; Albeshri, A. Performance Characteristics for Sparse Matrix-Vector Multi-Plication on GPUs; Springer: Cham, Switzerland, 2020; pp. 409–426. [Google Scholar]
- Mohammed, T.; Albeshri, A.; Katib, I.; Mehmood, R. DIESEL: A novel deep learning-based tool for SpMV computations and solving sparse linear equation systems. J. Supercomput. 2020, 77, 6313–6355. [Google Scholar] [CrossRef]
- Muhammed, T.; Mehmood, R.; Albeshri, A.; Katib, I. SURAA: A Novel Method and Tool for Loadbalanced and Coalesced SpMV Computations on GPUs. Appl. Sci. 2019, 9, 947. [Google Scholar] [CrossRef]
- Alahmadi, S.; Mohammed, T.; Albeshri, A.; Katib, I.; Mehmood, R. Performance Analysis of Sparse Matrix-Vector Multiplication (SpMV) on Graphics Processing Units (GPUs). Electronics 2020, 9, 1675. [Google Scholar] [CrossRef]
- Alyahya, H.; Mehmood, R.; Katib, I. Parallel Iterative Solution of Large Sparse Linear Equation Systems on the Intel MIC Architecture; Springer: Cham, Switzerland, 2019; pp. 377–407. [Google Scholar] [CrossRef]
- Mehmood, R.; Crowcroft, J. Parallel Iterative Solution Method for Large Sparse Linear Equation Systems. Technical Report Number UCAM-CL-TR-650, Computer Laboratory, University of Cambridge, Cambridge, UK, 2005. 2005. Available online: https://www.cl.cam.ac.uk/research/srg/netos/papers/MC05.pdf (accessed on 26 February 2016).
- Nicole Casal Moore. Towards a Breakthrough in Software for Advanced Computing. Available online: https://cse.engin.umich.edu/stories/a-breakthrough-for-large-scale-computing (accessed on 24 August 2022).
- Guest, M. The Scientific Case for High Performance Computing in Europe 2012–2020. Tech. Rep. 2012.
- Matsuoka, S.; Sato, H.; Tatebe, O.; Koibuchi, M.; Fujiwara, I.; Suzuki, S.; Kakuta, M.; Ishida, T.; Akiyama, Y.; Suzumura, T.; et al. Extreme Big Data (EBD): Next Generation Big Data Infrastructure Technologies Towards Yottabyte/Year. Supercomput. Front. Innov. 2014, 1, 89–107. [Google Scholar] [CrossRef] [Green Version]
- ETP4HPC, A. EuropEan Technology platform for High Performance Computing. In ETp4hpc ETP4HPC; Barcelona, Spain, 2013; Available online: https://www.etp4hpc.eu/pujades/files/ETP4HPC_book_singlePage.pdf (accessed on 1 November 2022).
- Hoefler, T.; Jeannot, E.; Mercier, G. An Overview of Topology Mapping Algorithms and Techniques in High-Performance Computing; Wiley-IEEE Press: Hoboken, NJ, USA, 2014; pp. 73–94. [Google Scholar] [CrossRef]
- Majo, Z.; Gross, T.R. A library for portable and composable data locality optimizations for NUMA systems. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming—PPoPP 2015, San Francisco, CA, USA, 7–11 February 2015; volume 50; pp. 227–238. [Google Scholar] [CrossRef] [Green Version]
- Lezos, C.; Latifis, I.; Dimitroulakos, G.; Masselos, K. Compiler-Directed Data Locality Optimization in MATLAB. In Proceedings of the 19th International Workshop on Software and Compilers for Embedded Systems—SCOPES ’16, New York, NY, USA, 23–25 May 2016; pp. 6–9. [Google Scholar] [CrossRef]
- Ragan-Kelley, J.; Barnes, C.; Adams, A.; Paris, S.; Durand, F.; Amarasinghe, S. Halide. ACM SIGPLAN Not. 2013, 48, 519–530. [Google Scholar] [CrossRef] [Green Version]
- Chamberlain, B. Parallel Processing Languages: Cray’s Chapel Programming. Available online: https://www.cray.com/blog/chapel-productive-parallel-programming/ (accessed on 17 September 2022).
- Charles, P.; Grothoff, C.; Saraswat, V.; Donawa, C.; Kielstra, A.; Ebcioglu, K.; von Praun, C.; Sarkar, V. X10. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object Oriented Programming Systems Languages and Applications—OOPSLA ’05, New York, NY, USA, 16–20 October 2005; Volume 40, pp. 519–538. [Google Scholar] [CrossRef]
- Huang, L.; Jin, H.; Yi, L.; Chapman, B. Enabling locality-aware computations in OpenMP. Sci. Program. 2010, 18, 169–181. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Zhou, H. Spatial Locality-Aware Cache Partitioning for Effective Cache Sharing. In Proceedings of the 2015 44th International Conference on Parallel Processing, Beijing, China, 1–4 September 2015; pp. 150–159. [Google Scholar] [CrossRef]
- González, A.; Aliagas, C.; Valero, M. A data cache with multiple caching strategies tuned to different types of locality. In Proceedings of the 9th International Conference on Supercomputing—ICS ’95, New York, NY, USA, 3–7 July 1995. [Google Scholar] [CrossRef]
- Seshadri, V.; Mutlu, O.; Kozuch, M.A.; Mowry, T.C. The evicted-address filter. In Proceedings of the 21st International Conference on Parallel Architectures and Compilation Techniques—PACT ’12, Minneapolis, MN, USA, 19–23 September 2012; p. 355. [Google Scholar] [CrossRef]
- Rivers, J.; Davidson, E. Reducing conflicts in direct-mapped caches with a temporality-based design. In Proceedings of the 1996 ICPP Workshop on Challenges for Parallel Processing, Ithaca, NY, USA, 12 August 2002; Volume 1, pp. 154–163. [Google Scholar] [CrossRef]
- Johnson, T.L.; Hwu, W.-M.W. Run-time adaptive cache hierarchy management via reference analysis. In Proceedings of the 24th Annual International Symposium on Computer Architecture—ISCA ’97, Boulder, CO, USA, 2–4 June 1997; Volume 25, pp. 315–326. [Google Scholar] [CrossRef]
- Jiang, X.; Madan, N.; Zhao, L.; Upton, M.; Iyer, R.; Makineni, S.; Newell, D.; Solihin, Y.; Balasubramonian, R. CHOP: Adaptive filter-based DRAM caching for CMP server platforms. In Proceedings of the HPCA—16 2010 The Sixteenth International Symposium on High-Performance Computer Architecture, Bangalore, India, 9–14 January 2010; pp. 1–12. [Google Scholar] [CrossRef]
- Muchnick, S.S. Advanced Compiler Design and Implementation; Morgan Kaufmann Publishers: Burlington, MA, USA, 1997. [Google Scholar]
- Allen, R.; Kennedy, K. Optimizing Compilers for Modern Architectures: A Dependence-Based Approach; Morgan Kaufmann Pub-lishers: Burlington, MA, USA, 2001. [Google Scholar]
- Wolfe, M. Loops skewing: The wavefront method revisited. Int. J. Parallel Program. 1986, 15, 279–293. [Google Scholar] [CrossRef]
- Kowarschik, M.; Weiß, C. An Overview of Cache Optimization Techniques and Cache-Aware Numerical Algorithms; Springer: Berlin/Heidelberg, Germany, 2003; pp. 213–232. [Google Scholar] [CrossRef]
- Xue, J.; Ling, J. Loop Tiling for Parallelism; Kluwer Academic: New York, NY, USA, 2000. [Google Scholar]
- Bao, B.; Ding, C. Defensive loop tiling for shared cache. In Proceedings of the 2013 IEEE/ACM International Symposium on Code Generation and Optimization (CGO), Shenzhen, China, 23–27 February 2013; pp. 1–11. [Google Scholar] [CrossRef]
- Wolf, M.E.; Lam, M.S. A data locality optimizing algorithm. In Proceedings of the ACM SIGPLAN 1991 Conference on Programming Language Design and Implementation—PLDI ’91, Toronto, Canada, 26–28 June 1991. [Google Scholar] [CrossRef]
- Irigoin, F.; Triolet, R. Supernode partitioning. In Proceedings of the 15th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages—POPL ’88, Boston, MA, USA, 15–21 January 1988; pp. 319–329. [Google Scholar] [CrossRef]
- Zhou, X.; Giacalone, J.-P.; Garzarán, M.J.; Kuhn, R.H.; Ni, Y.; Padua, D. Hierarchical overlapped tiling. In Proceedings of the Tenth International Symposium on Code Generation and Optimization—CHO ’12, Montreal, Canada, 27 February–3 March 2012; pp. 207–218. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Chen, L.; Wu, C.; Feng, X.-B. Global Tiling for Communication Minimal Parallelization on Distributed Memory Systems. In Euro-Par 2008—Parallel Processing; Springer: Berlin/Heidelberg, Germany, 2008; pp. 382–391. [Google Scholar] [CrossRef]
- Hogstedt, K.; Carter, L.; Ferrante, J. On the parallel execution time of tiled loops. IEEE Trans. Parallel Distrib. Syst. 2003, 14, 307–321. [Google Scholar] [CrossRef]
- Yi, Q. Automated programmable control and parameterization of compiler optimizations. In Proceedings of the International Symposium on Code Generation and Optimization (CGO 2011), Chamonix, France, 2–6 April 2011; pp. 97–106. [Google Scholar] [CrossRef] [Green Version]
- Hall, M.; Chame, J.; Chen, C.; Shin, J.; Rudy, G.; Khan, M.M. Loop Transformation Recipes for Code Generation and Auto-Tuning; Springer: Berlin/Heidelberg, Germany, 2010; pp. 50–64. [Google Scholar] [CrossRef]
- Tavarageri, S.; Pouchet, L.-N.; Ramanujam, J.; Rountev, A.; Sadayappan, P. Dynamic selection of tile sizes. In Proceedings of the 2011 18th International Conference on High Performance Computing, Bengaluru, India, 18–21 December 2011; pp. 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, K.; McKinley, K.S. Optimizing for parallelism and data locality. In Proceedings of the 25th Anniversary International Conference on Supercomputing Anniversary Volume, New York, NY, USA, 2–6 June 2014; pp. 151–162. [Google Scholar] [CrossRef]
- Mittal, S. A Survey Of Cache Bypassing Techniques. J. Low Power Electron. Appl. 2016, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Raicu, I.; Zhao, Y.; Dumitrescu, C.; Foster, I.; Wilde, M. Falkon. In Proceedings of the 2007 ACM/IEEE Conference on Supercomputing—SC ’07, New York, NY, USA, 10–16 November 2007; p. 43. [Google Scholar] [CrossRef]
- Yoo, A.B.; Jette, M.A.; Grondona, M. SLURM: Simple Linux Utility for Resource Management; Springer: Berlin/Heidelberg, Germany, 2003; pp. 44–60. [Google Scholar] [CrossRef]
- Gentzsch, W. Sun Grid Engine: Towards creating a compute power grid. In Proceedings of the First IEEE/ACM International Symposium on Cluster Computing and the Grid, Brisbane, QLD, Australia, 15–18 May 2002. [Google Scholar] [CrossRef]
- Thain, D.; Tannenbaum, T.; Livny, M. Distributed computing in practice: The Condor experience: Research Articles. Concurr. Comput. Pract. Exp. 2005, 17, 323–356. [Google Scholar] [CrossRef] [Green Version]
- Ousterhout, K.; Wendell, P.; Zaharia, M.; Stoica, I. Sparrow. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles—SOSP ’13, New York, NY, USA, 3–6 November 2013. [Google Scholar] [CrossRef] [Green Version]
- Olivier, S.; Porterfield, A.K.; Wheeler, K.B.; Spiegel, M.; Prins, J.F. OpenMP task scheduling strategies for multicore NUMA systems. Int. J. High Perform. Comput. Appl. 2012, 26, 110–124. [Google Scholar] [CrossRef]
- Frigo, M.; Leiserson, C.E.; Randall, K.H. The implementation of the Cilk-5 multithreaded language. ACM SIGPLAN Not. 1998, 33, 212–223. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Zhou, X.; Li, T.; Zhao, D.; Lang, M.; Raicu, I. Optimizing load balancing and data-locality with data-aware scheduling. In Proceedings of the 2014 IEEE International Conference on Big Data (Big Data), Washington, DC, USA, 27–30 October 2014; pp. 119–128. [Google Scholar] [CrossRef] [Green Version]
- Falt, Z.; Kruliš, M.; Bednárek, D.; Yaghob, J.; Zavoral, F. Locality Aware Task Scheduling in Parallel Data Stream Processing; Springer: Cham, Switzerland, 2015; pp. 331–342. [Google Scholar]
- Muddukrishna, A.; Jonsson, P.A.; Brorsson, M. Locality-Aware Task Scheduling and Data Distribution for OpenMP Programs on NUMA Systems and Manycore Processors. Sci. Program. 2015, 2015, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Ding, W.; Zhang, Y.; Kandemir, M.; Srinivas, J.; Yedlapalli, P. Locality-aware mapping and scheduling for multicores. In Proceedings of the 2013 IEEE/ACM International Symposium on Code Generation and Optimization (CGO), Shenzhen, China, 23–27 February 2013; pp. 1–12. [Google Scholar] [CrossRef]
- Lifflander, J.; Krishnamoorthy, S.; Kale, L.V. Optimizing Data Locality for Fork/Join Programs Using Constrained Work Stealing. In Proceedings of the SC14: International Conference for High Performance Computing, Networking, Storage and Analysis, New Orleans, LA, USA, 16–21 November 2014; pp. 857–868. [Google Scholar] [CrossRef] [Green Version]
- Xue, L.; Kandemir, M.; Chen, G.; Li, F.; Ozturk, O.; Ramanarayanan, R.; Vaidyanathan, B. Locality-Aware Distributed Loop Scheduling for Chip Multiprocessors. In Proceedings of the 20th International Conference on VLSI Design Held Jointly with 6th International Conference on Embedded Systems (VLSID’07), Bangalore, India, 6–10 January 2007; pp. 251–258. [Google Scholar] [CrossRef]
- Isard, M.; Budiu, M.; Yu, Y.; Birrell, A.; Fetterly, D. Dryad. In Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007—EuroSys ’07, New York, NY, USA, 21–23 March 2007; Volume 41, pp. 59–72. [Google Scholar] [CrossRef]
- Maglalang, J.; Krishnamoorthy, S.; Agrawal, K. Locality-Aware Dynamic Task Graph Scheduling. In Proceedings of the 2017 46th International Conference on Parallel Processing (ICPP), Bristol, UK, 14–17 August 2017; pp. 70–80. [Google Scholar] [CrossRef] [Green Version]
- Yoo, R.M.; Hughes, C.J.; Kim, C.; Chen, Y.-K.; Kozyrakis, C. Locality-Aware Task Management for Unstructured Par-allelism: A Quantitative Limit Study. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Parallelism in Algorithms and Architectures, New York, NY, USA, 23–25 July 2013. [Google Scholar]
- Paudel, J.; Tardieu, O.; Amaral, J.N. On the Merits of Distributed Work-Stealing on Selective Locality-Aware Tasks. In Proceedings of the 2013 42nd International Conference on Parallel Processing, Lyon, France, 1–4 October 2013; pp. 100–109. [Google Scholar] [CrossRef]
- Choi, J.; Adufu, T.; Kim, Y. Data-Locality Aware Scientific Workflow Scheduling Methods in HPC Cloud Environments. Int. J. Parallel Program. 2016, 45, 1128–1141. [Google Scholar] [CrossRef]
- Guo, Y. A Scalable Locality-Aware Adaptive Work-StealingScheduler for Multi-Core Task Parallelism. Ph.D. Thesis, Rice University, Houston, TX, USA, 2011. [Google Scholar]
- Hindman, B.; Konwinski, A.; Zaharia, M.; Ghodsi, A.; Joseph, A.D.; Katz, R.; Shenker, S.; Stoica, I. Mesos: A platform for fine-grained resource sharing in the data center. In Proceedings of the 8th USENIX conference on Networked systems design and implementation. USENIX Association, Boston, MA, USA, March 30–April 1 2011; pp. 295–308. [Google Scholar]
- Isard, M.; Prabhakaran, V.; Currey, J.; Wieder, U.; Talwar, K.; Goldberg, A. Quincy. In Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles—SOSP ’09, Big Sky, MT, USA, 11–14 October 2009. [Google Scholar] [CrossRef]
- Valiant, L.G. A bridging model for parallel computation. Commun. ACM 1990, 33, 103–111. [Google Scholar] [CrossRef]
- Cheatham, T.; Fahmyy, A.; Stefanescu, D.C.; Valiant, L.G. Bulk Synchronous Parallel Computing-A Paradigm for transportable Software. Harv. Comput. Sci. Group Tech. Rep. 1995. [Google Scholar]
- Malewicz, G.; Austern, M.H.; Bik, A.J.; Dehnert, J.C.; Horn, I.; Leiser, N.; Czajkowski, G. Pregel. In Proceedings of the 2010 International Conference on Management of Data—SIGMOD ’10, New York, NY, USA, 6–10 June 2010; pp. 135–146. [Google Scholar] [CrossRef]
- Apache Hama Big Data and High-Performance Computing. Available online: https://hama.apache.org/ (accessed on 22 January 2018).
- Giraph-Welcome To Apache Giraph. Available online: https://giraph.apache.org/ (accessed on 20 October 2022).
- Hill, J.M.; McColl, B.; Stefanescu, D.C.; Goudreau, M.W.; Lang, K.; Rao, S.B.; Suel, T.; Tsantilas, T.; Bisseling, R.H. BSPlib: The BSP programming library. Parallel Comput. 1998, 24, 1947–1980. [Google Scholar] [CrossRef] [Green Version]
- BSPonMPI. Available online: https://bsponmpi.sourceforge.net/ (accessed on 20 January 2022).
- Yzelman, A.N.; Bisseling, R.H.; Roose, D.; Meerbergen, K. MulticoreBSP for C: A High-Performance Library for Shared-Memory Parallel Programming. Int. J. Parallel Program. 2013, 42, 619–642. [Google Scholar] [CrossRef] [Green Version]
- Yzelman, A.; Bisseling, R.H. An object-oriented bulk synchronous parallel library for multicore programming. Concurr. Comput. Pr. Exp. 2011, 24, 533–553. [Google Scholar] [CrossRef]
- Abello, J.M.; Vitter, J.S. External memory algorithms: DIMACS Workshop External Memory and Visualization, May 20–22, 1998; American Mathematical Society: Providence, RI, USA, 1999. [Google Scholar]
- Kwiatkowska, M.; Mehmood, R. Out-of-Core Solution of Large Linear Systems of Equations Arising from Stochastic Modelling; Springer: Berlin/Heidelberg, Germany, 2002; pp. 135–151. [Google Scholar] [CrossRef]
- Mehmood, R. Disk-Based Techniques for Efficient Solution of Large Markov Chains. PhD Thesis, School of Computer Science, University of Birmingham,, Birmingham, UK, 2004. [Google Scholar]
- Jung, M.; Wilson, E.H.; Choi, W.; Shalf, J.; Aktulga, H.M.; Yang, C.; Saule, E.; Catalyurek, U.V.; Kandemir, M. Exploring the future of out-of-core computing with compute-local non-volatile memory. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis on—SC ’13, Denver, CO, USA, 17–22 November 2013, 17–22 November 2013; pp. 1–11. [Google Scholar] [CrossRef]
- Koller, R.; Marmol, L.; Rangaswami, R.; Sundararaman, S.; Talagala, N.; Zhao, M. Write policies for host-side flash caches. In Proceedings of the 11th USENIX Conference on File and Storage Technologies. USENIX Association, San Jose, CA, USA, 12–15 February 2013; pp. 45–58. [Google Scholar]
- Saxena, M.; Swift, M.M.; Zhang, Y. FlashTier. In Proceedings of the 7th ACM European Conference on Computer Systems—EuroSys ’12, New York, NY, USA, 10–13 April 2012; p. 267. [Google Scholar] [CrossRef]
- Byan, S.; Lentini, J.; Madan, A.; Pabon, L.; Condict, M.; Kimmel, J.; Kleiman, S.; Small, C.; Storer, M. Mercury: Host-side flash caching for the data center. In Proceedings of the 012 IEEE 28th Symposium on Mass Storage Systems and Technologies (MSST), Monterey, CA, USA, 19–20 April 2012; pp. 1–12. [Google Scholar] [CrossRef]
- Saule, E.; Aktulga, H.M.; Yang, C.; Ng, E.G.; Çatalyürek, Ü.V. An Out-of-Core Task-based Middleware for Da-ta-Intensive Scientific Computing. In Handbook on Data Centers; Springer: New York, NY, USA, 2015; pp. 647–667. [Google Scholar]
- Rothberg, E.; Schreiber, R. Efficient Methods for Out-of-Core Sparse Cholesky Factorization. SIAM J. Sci. Comput. 1999, 21, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Mandhapati, P.; Khaitan, S. High Performance Computing Using out-of-core Sparse Direct Solvers. World Acad. Sci. Eng. Technol. 2009, 3, 377–383. [Google Scholar]
- Geist, A.; Lucas, R. Whitepaper on the Major Computer Science Challenges at Exascale. 2009. Available online: https://exascale.org/mediawiki/images/8/87/ExascaleSWChallenges-Geist_Lucas.pdf (accessed on 1 November 2022).
- Das, B.V.D.; Kathiresan, N.; Ravindran, R. Process Mapping Parallel Computing. US8161127B2, 28 November 2011. [Google Scholar]
- Hursey, J.; Squyres, J.M.; Dontje, T. Locality-Aware Parallel Process Mapping for Multi-core HPC Systems. In Proceedings of the 2011 IEEE International Conference on Cluster Computing, Austin, TX USA, 26–30 September 2011; pp. 527–531. [Google Scholar] [CrossRef]
- Rodrigues, E.R.; Madruga, F.L.; Navaux, P.O.A.; Panetta, J. Multi-core aware process mapping and its impact on communication overhead of parallel applications. In Proceedings of the 2009 IEEE Symposium on Computers and Communications, Sousse, Tunisia, 5–8 July 2009; pp. 811–817. [Google Scholar] [CrossRef]
- Rashti, M.J.; Green, J.; Balaji, P.; Afsahi, A.; Gropp, W. Multi-core and Network Aware MPI Topology Functions; Springer: Berlin/Heidelberg, Germany, 2011; pp. 50–60. [Google Scholar] [CrossRef]
- Hestness, J.; Keckler, S.W.; Wood, D.A. A comparative analysis of microarchitecture effects on CPU and GPU memory system behavior. In Proceedings of the 2014 IEEE International Symposium on Workload Characterization (IISWC), Raleigh, NC, USA, 26–28 October 2014; pp. 150–160. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Chen, W.; Huang, J.; Robert, B.; Kuhn, H. MPIPP. In Proceedings of the 20th annual international conference on Supercomputing—ICS ’06, Cairns, QLD, Australia, 28 June–1 July 2006. [Google Scholar] [CrossRef]
- Zhang, J.; Zhai, J.; Chen, W.; Zheng, W. Process Mapping for MPI Collective Communications; Springer: Berlin/Heidelberg, Germany, 2009; pp. 81–92. [Google Scholar] [CrossRef] [Green Version]
- Pilla, L.L.; Ribeiro, C.P.; Coucheney, P.; Broquedis, F.; Gaujal, B.; Navaux, P.O.; Méhaut, J.-F. A topology-aware load balancing algorithm for clustered hierarchical multi-core machines. Futur. Gener. Comput. Syst. 2014, 30, 191–201. [Google Scholar] [CrossRef]
- Zarrinchian, G.; Soryani, M.; Analoui, M. A New Process Placement Algorithm in Multi-Core Clusters Aimed to Reducing Network Interface Contention; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1041–1050. [Google Scholar] [CrossRef]
- Mercier, G.; Clet-Ortega, J. Towards an Efficient Process Placement Policy for MPI Applications in Multicore Environments; Springer: Berlin/Heidelberg, Germany, 2009; pp. 104–115. [Google Scholar]
- Balaji, P.; Gupta, R.; Vishnu, A.; Beckman, P. Mapping communication layouts to network hardware characteristics on massive-scale blue gene systems. Comput. Sci. Res. Dev. 2011, 26, 247–256. [Google Scholar] [CrossRef]
- Smith, B.E.; Bode, B. Performance Effects of Node Mappings on the IBM BlueGene/L Machine; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1005–1013. [Google Scholar] [CrossRef]
- Yu, H.; Chung, I.-H.; Moreira, J. Topology Mapping for Blue Gene/L Supercomputer. In Proceedings of the ACM/IEEE SC 2006 Conference (SC’06), Cairns, QLD, Australia, 28 June–1 July 2006; p. 52. [Google Scholar] [CrossRef] [Green Version]
- Ito, S.; Goto, K.; Ono, K. Automatically optimized core mapping to subdomains of domain decomposition method on multicore parallel environments. Comput. Fluids 2013, 80, 88–93. [Google Scholar] [CrossRef]
- Traff, J. Implementing the MPI Process Topology Mechanism. In Proceedings of the ACM/IEEE SC 2002 Conference (SC’02), Baltimore, MD, USA, 16–22 November 2002; p. 28. [Google Scholar] [CrossRef]
- Dümmler, J.; Rauber, T.; Rünger, G. Mapping Algorithms for Multiprocessor Tasks on Multi-Core Clusters. In Proceedings of the 2008 37th International Conference on Parallel Processing, Washington, DC, USA, 9–11 September 2008; pp. 141–148. [Google Scholar] [CrossRef]
- Hoefler, T.; Snir, M. Generic topology mapping strategies for large-scale parallel architectures. In Proceedings of the International Conference on Supercomputing—ICS ’11, Tucson, AZ, USA, 31 May–4 June 2011; pp. 75–84. [Google Scholar] [CrossRef]
- Kale, L.V.; Krishnan, S. CHARM++: A Portable Concurrent Object Oriented System Based on C++; Technical Report; University of Illinois at Urbana-Champaign: Champaign, IL, USA, 1993. [Google Scholar]
- El-Ghazawi, T. UPC: Distributed Shared Memory Programming; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Castro, M.; Goes, L.F.W.; Ribeiro, C.P.; Cole, M.; Cintra, M.; Mehaut, J.-F. A machine learning-based approach for thread mapping on transactional memory applications. In Proceedings of the 2011 18th International Conference on High Performance Computing, New York, NY, USA, 12–18 November 2011; pp. 1–10. [Google Scholar] [CrossRef]
- Grewe, D.; O’Boyle, M.F.P. A Static Task Partitioning Approach for Heterogeneous Systems Using OpenCL; Springer: Berlin/Heidelberg, Germany, 2011; pp. 286–305. [Google Scholar] [CrossRef] [Green Version]
- Tournavitis, G.; Wang, Z.; Franke, B.; O’Boyle, M.F.P. Towards a holistic approach to auto-parallelization. ACM SIGPLAN Not. 2009, 44, 177–187. [Google Scholar] [CrossRef]
- Wang, Z.; O’Boyle, M.F. Mapping parallelism to multi-cores. In Proceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming—PpoPP ’09, Raleigh, NC, USA, 14–18 February 2008; Volume 44, p. 75. [Google Scholar] [CrossRef]
- Long, S.; Fursin, G.; Franke, B. A Cost-Aware Parallel Workload Allocation Approach Based on Machine Learning Techniques; Springer: Berlin/Heidelberg, Germany, 2007; pp. 506–515. [Google Scholar] [CrossRef] [Green Version]
- Pinel, F.; Bouvry, P.; Dorronsoro, B.; Khan, S.U. Savant: Automatic parallelization of a scheduling heuristic with machine learning. Nat. Biol. 2013, 52–57. [Google Scholar] [CrossRef] [Green Version]
- Emani, M.K.; O’Boyle, M. Celebrating diversity: A mixture of experts approach for runtime mapping in dynamic environments. In Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and Implementation—PLDI 2015, Portland, OR, USA, 13–17 June 2015. [Google Scholar] [CrossRef]
- Emani, M.K.; O’Boyle, M. Change Detection Based Parallelism Mapping: Exploiting Offline Models and Online Adaptation; Springer International Publishing: Cham, Switzerland, 2015; pp. 208–223. [Google Scholar]
- Luk, C.-K.; Hong, S.; Kim, H. Qilin. In Proceedings of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture—Micro-42, New York, NY, USA, 12–16 December 2009; pp. 45–55. [Google Scholar] [CrossRef]
- González-Domínguez, J.; Taboada, G.L.; Fraguela, B.B.; Martín, M.J.; Touriño, J. Automatic mapping of parallel applications on multicore architectures using the Servet benchmark suite. Comput. Electr. Eng. 2012, 38, 258–269. [Google Scholar] [CrossRef]
- Tiwari, D.; Vazhkudai, S.S.; Kim, Y.; Ma, X.; Boboila, S.; Desnoyers, P.J. Reducing Data Movement Costs using Ener-gy-Efficient, Active Computation on SSD. In Proceedings of the 2012 Workshop on Power-Aware Computing and Systems, Hollywood, CA, USA, 7 October 2012. [Google Scholar]
- Zheng, F.; Yu, H.; Hantas, C.; Wolf, M.; Eisenhauer, G.; Schwan, K.; Abbasi, H.; Klasky, S. GoldRush. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis on—SC ’13, Denver, CO, USA, 17–22 November 2013. [Google Scholar] [CrossRef]
- Sewell, C.; Heitmann, K.; Finkel, H.; Zagaris, G.; Parete-Koon, S.T.; Fasel, P.K.; Pope, A.; Frontiere, N.; Lo, L.-T.; Messer, B.; et al. Large-scale compute-intensive analysis via a combined in-situ and co-scheduling workflow approach. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis—SC ’15, Atlanta, GA, USA, 9 November 2015; p. 50. [Google Scholar] [CrossRef]
- Lakshminarasimhan, S.; Shah, N.; Ethier, S.; Klasky, S.; Latham, R.; Ross, R.; Samatova, N.F. Compressing the Incompressible with ISABELA: In-Situ Reduction of Spatio-temporal Data. Springer: Berlin/Heidelberg, Germany, 2011; pp. 366–379. [Google Scholar] [CrossRef]
- Zou, H.; Zheng, F.; Wolf, M.; Eisenhauer, G.; Schwan, K.; Abbasi, H.; Liu, Q.; Podhorszki, N.; Klasky, S.; Wolf, M. Quality-Aware Data Management for Large Scale Scientific Applications. In Proceedings of the 2012 SC Companion: High Performance Computing, Networking Storage and Analysis, Salt Lake City, UT, USA, 24–29 June 2012; pp. 816–820. [Google Scholar] [CrossRef]
- Kim, J.; Abbasi, H.; Chacon, L.; Docan, C.; Klasky, S.; Liu, Q.; Podhorszki, N.; Shoshani, A.; Wu, K. Parallel in situ indexing for data-intensive computing. In Proceedings of the 2011 IEEE Symposium on Large Data Analysis and Visualization, Providence, RI, USA, 23–24 October 2011; pp. 65–72. [Google Scholar] [CrossRef] [Green Version]
- Lakshminarasimhan, S.; Boyuka, D.A.; Pendse, S.V.; Zou, X.; Jenkins, J.; Vishwanath, V.; Papka, M.E.; Samatova, N.F. Scalable in situ scientific data encoding for analytical query processing. In Proceedings of the 22nd international symposium on High-performance parallel and distributed computing, New York, NY, USA, 17–21 June 2013; pp. 1–12. [Google Scholar] [CrossRef]
- Su, Y.; Wang, Y.; Agrawal, G. In-Situ Bitmaps Generation and Efficient Data Analysis based on Bitmaps. In 24th International Symposium on High-Performance Parallel and Distributed Computing—HPDC ’15; ACM: New York, NY, USA, 2015; pp. 61–72. [Google Scholar] [CrossRef]
- Karimabadi, H.; Loring, B.; O’Leary, P.; Majumdar, A.; Tatineni, M.; Geveci, B. In-situ visualization for global hybrid simulations. In Proceedings of the Conference on Extreme Science and Engineering Discovery Environment Gateway to Discovery—XSEDE ’13, Atlanta, GA, USA, 13–18 July 2013; p. 1. [Google Scholar] [CrossRef]
- Yu, H.; Wang, C.; Grout, R.W.; Chen, J.H.; Ma, K.-L. In Situ Visualization for Large-Scale Combustion Simulations. IEEE Comput. Graph. Appl. 2010, 30, 45–57. [Google Scholar] [CrossRef]
- Zou, H.; Schwan, K.; Slawinska, M.; Wolf, M.; Eisenhauer, G.; Zheng, F.; Dayal, J.; Logan, J.; Liu, Q.; Klasky, S.; et al. FlexQuery: An online query system for interactive remote visual data exploration at large scale. In Proceedings of the 2013 IEEE International Conference on Cluster Computing (CLUSTER), Indianapolis, IN, USA, 23–27 September 2013; pp. 1–8. [Google Scholar] [CrossRef]
- Woodring, J.; Ahrens, J.; Tautges, T.J.; Peterka, T.; Vishwanath, V.; Geveci, B. On-demand unstructured mesh translation for reducing memory pressure during in situ analysis. In Proceedings of the 8th International Workshop on Ultrascale Visualization—UltraVis ’13, Denver, CO, USA, 17–22 November 2013. [Google Scholar] [CrossRef]
- Nouanesengsy, B.; Woodring, J.; Patchett, J.; Myers, K.; Ahrens, J. ADR visualization: A generalized framework for ranking large-scale scientific data using Analysis-Driven Refinement. In Proceedings of the 2014 IEEE 4th Symposium on Large Data Analysis and Visualization (LDAV), Paris, France, 9–10 November 2014; pp. 43–50. [Google Scholar] [CrossRef]
- Landge, A.G.; Pascucci, V.; Gyulassy, A.; Bennett, J.C.; Kolla, H.; Chen, J.; Bremer, P.-T. In-Situ Feature Extraction of Large Scale Combustion Simulations Using Segmented Merge Trees. In Proceedings of the SC14: International Conference for High Performance Computing, Networking, Storage and Analysis, New Orleans, LA, USA, 16–21 November 2014; pp. 1020–1031. [Google Scholar] [CrossRef]
- Zhang, F.; Lasluisa, S.; Jin, T.; Rodero, I.; Bui, H.; Parashar, M. In-situ Feature-Based Objects Tracking for Large-Scale Scientific Simulations. In Proceedings of the 2012 SC Companion: High Performance Computing, Networking Storage and Analysis, Salt Lake City, UT, USA, 24–29 June 2012; pp. 736–740. [Google Scholar] [CrossRef] [Green Version]
- Mehmood, R.; Meriton, R.; Graham, G.; Hennelly, P.; Kumar, M. Exploring the influence of big data on city transport operations: A Markovian approach. Int. J. Oper. Prod. Manag. 2017, 37, 75–104. [Google Scholar] [CrossRef]
- Mehmood, R.; Graham, G. Big Data Logistics: A health-care Transport Capacity Sharing Model. Procedia Comput. Sci. 2015, 64, 1107–1114. [Google Scholar] [CrossRef] [Green Version]
- AlOmari, E.; Katib, I.; Mehmood, R. Iktishaf: A Big Data Road-Traffic Event Detection Tool Using Twitter and Spark Machine Learning. Mob. Networks Appl. 2020, 1–16. [Google Scholar] [CrossRef]
- Alotaibi, S.; Mehmood, R.; Katib, I.; Rana, O.; Albeshri, A. Sehaa: A Big Data Analytics Tool for Healthcare Symptoms and Diseases Detection Using Twitter, Apache Spark, and Machine Learning. Appl. Sci. 2020, 10, 1398. [Google Scholar] [CrossRef] [Green Version]
- Aqib, M.; Mehmood, R.; Alzahrani, A.; Katib, I. Aqib, M.; Mehmood, R.; Alzahrani, A.; Katib, I. A smart disaster management system for future cities using deep learning, GPUs, and in-memory computing. In Smart Infrastructure and Applications; Springer: Cham, Switzerland, 2020; pp. 159–184. [Google Scholar]
- Aqib, M.; Mehmood, R.; Alzahrani, A.; Katib, I.; Albeshri, A.; Altowaijri, S.M. Rapid Transit Systems: Smarter Urban Planning Using Big Data, In-Memory Computing, Deep Learning, and GPUs. Sustainability 2019, 11, 2736. [Google Scholar] [CrossRef] [Green Version]
- Suma, S.; Mehmood, R.; Albeshri, A. Automatic Detection and Validation of Smart City Events Using HPC and Apache Spark Platforms. In Smart Infrastructure and Applications: Foundations for Smarter Cities and Societies; Springer: Berlin/Heidelberg, Germany, 2020; pp. 55–78. [Google Scholar] [CrossRef]
- Alotaibi, S.; Mehmood, R. Big Data Enabled Healthcare Supply Chain Management: Opportunities and Challenges. In Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering (LNICST); Springer: Berlin/Heidelberg, Germany, 2018; Volume 224, pp. 207–215. [Google Scholar] [CrossRef]
- Ahmad, I.; Alqurashi, F.; Abozinadah, E.; Mehmood, R. Deep Journalism and DeepJournal V1.0: A Data-Driven Deep Learning Approach to Discover Parameters for Transportation. Sustainability 2022, 14, 5711. [Google Scholar] [CrossRef]
- Arfat, Y.; Usman, S.; Mehmood, R.; Katib, I. Big data for smart infrastructure design: Opportunities and challenges. In Smart Infrastructure and Applications Foundations for Smarter Cities and Societies; Springer: Cham, Switzerland, 2020; pp. 491–518. [Google Scholar]
- Singh, D.; Reddy, C.K. A survey on platforms for big data analytics. J. Big Data 2014, 2, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dean, J.; Ghemawat, S. MapReduce. Commun. ACM 2008, 51, 107. [Google Scholar] [CrossRef]
- Ghemawat, S.; Gobioff, H.; Leung, S.-T. The Google file system. In Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles—SOSP ’03, Bolton Landing, NY, USA, 19–22 October 2003; Volume 37, p. 29. [Google Scholar] [CrossRef]
- White, T. Hadoop: The Definitive Guide, 4th ed.; Yahoo Press: Sunnyvale, CA, USA, 2009. [Google Scholar]
- Shvachko, K.; Kuang, H.; Radia, S.; Chansler, R. The Hadoop Distributed File System. In Proceedings of the 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), Incline Vilage, NV, USA, 3–7 May 2010; pp. 2–10. [Google Scholar]
- Borthakur, D.; Rash, S.; Schmidt, R.; Aiyer, A.; Gray, J.; Sarma, J.S.; Muthukkaruppan, K.; Spiegelberg, N.; Kuang, H.; Ranganathan, K.; et al. Apache hadoop goes realtime at Facebook. In Proceedings of the 2011 International Conference on Management of Data–SIGMOD ’11, Athens, Greece, 12–16 June 2011; pp. 1071–1080. [Google Scholar] [CrossRef]
- Apache Tez. Available online: https://tez.apache.org/ (accessed on 18 June 2022).
- Ekanayake, J.; Li, H.; Zhang, B.; Gunarathne, T.; Bae, S.-H.; Qiu, J.; Fox, G. Twister. In Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing—HPDC ’10, New York, NY, USA, 21–25 June 2010; pp. 810–818. [Google Scholar] [CrossRef]
- Padhy, R.P. Big Data Processing with Hadoop-MapReduce in Cloud Systems. IJ-CLOSER Int. J. Cloud Comput. Serv. Sci. 2012, 2, 233–245. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.; Kaur, R. Hadoop: Addressing challenges of Big Data. In Proceedings of the 2014 IEEE International Advance Computing Conference (IACC), New Delhi, India, 21–22 February 2014; pp. 686–689. [Google Scholar] [CrossRef]
- Yang, H.-C.; Dasdan, A.; Hsiao, R.-L.; Parker, D.S. Map-reduce-merge. In Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data—SIGMOD ’07, Beijing, China, 12–14 June 2007; pp. 1029–1040. [Google Scholar] [CrossRef]
- Katal, A.; Wazid, M.; Goudar, R.H. Big data: Issues, challenges, tools and Good practices. In Proceedings of the 2013 Sixth International Conference on Contemporary Computing (IC3), Noida, India, 8–10 August 2013; pp. 404–409. [Google Scholar]
- Tudoran, R.; Costan, A.; Antoniu, G. MapIterativeReduce. In Proceedings of the Third International Workshop on MapReduce and Its Applications Date—MapReduce ’12, Delft, the Netherlands, 18–19 June 2012; pp. 9–16. [Google Scholar] [CrossRef]
- Bu, Y.; Howe, B.; Balazinska, M.; Ernst, M.D. HaLoop. Proc. VLDB Endow. 2010, 3, 285–296. [Google Scholar] [CrossRef]
- Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A.; Ma, J.; McCauley, M.; Franklin, M.; Shenker, S.; Stoica, I. Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing. In Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation. USENIX Association, San Jose, CA, USA, 25–27 April 2012; p. 2. [Google Scholar]
- Chen, C.L.P.; Zhang, C.-Y. Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Inf. Sci. 2014, 275, 314–347. [Google Scholar] [CrossRef]
- Olston, C.; Reed, B.; Srivastava, U.; Kumar, R.; Tomkins, A. Pig latin. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data—SIGMOD ’08, Vancouver, BC, Canada, 10–12 June 2008; p. 1099. [Google Scholar] [CrossRef]
- Lin, Z.; Cai, M.; Huang, Z.; Lai, Y. SALA: A Skew-Avoiding and Locality-Aware Algorithm for MapReduce-Based Join; Springer: Cham, Switzerland, 2015; pp. 311–323. [Google Scholar]
- Ibrahim, S.; Jin, H.; Lu, L.; Wu, S.; He, B.; Qi, L. LEEN: Locality/Fairness-Aware Key Partitioning for MapReduce in the Cloud. In Proceedings of the 2010 IEEE Second International Conference on Cloud Computing Technology and Science, Indianapolis, IN, USA, 30 November–3 December 2010; pp. 17–24. [Google Scholar] [CrossRef]
- Rhine, R.; Bhuvan, N.T. Locality Aware MapReduce; Springer: Cham, Switzerland, 2015; pp. 221–228. [Google Scholar] [CrossRef]
- Eltabakh, M.Y.; Tian, Y.; Özcan, F.; Gemulla, R.; Krettek, A.; McPherson, J. CoHadoop. Proc. VLDB Endow. 2011, 4, 575–585. [Google Scholar] [CrossRef]
- Yu, X.; Hong, B. Grouping Blocks for MapReduce Co-Locality. In Proceedings of the 2015 IEEE International Parallel and Distributed Processing Symposium, Hyderabad, India, 29 May 2015; pp. 271–280. [Google Scholar] [CrossRef]
- Tan, J.; Meng, S.; Meng, X.; Zhang, L. Improving ReduceTask data locality for sequential MapReduce jobs. In Proceedings of the 2013 Proceedings IEEE INFOCOM, Turin, Italy, 14–19 April 2013; pp. 1627–1635. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, Q.; Yin, J.; Shang, P. DRAW: A New Data-gRouping-AWare Data Placement Scheme for Data Intensive Applications With Interest Locality. IEEE Trans. Magn. 2013, 49, 2514–2520. [Google Scholar] [CrossRef]
- Xie, J.; Yin, S.; Ruan, X.; Ding, Z.; Tian, Y.; Majors, J.; Manzanares, A.; Qin, X. Improving MapReduce performance through data placement in heterogeneous Hadoop clusters. In Proceedings of the 2010 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum (IPDPSW), Atlanta, GA, USA, 19–23 April 2010; pp. 1–9. [Google Scholar] [CrossRef]
- Arasanal, R.M.; Rumani, D.U. Improving MapReduce Performance through Complexity and Performance Based Data Placement in Heterogeneous Hadoop Clusters; Springer: Berlin/Heidelberg, Germany, 2013; pp. 115–125. [Google Scholar] [CrossRef]
- Lee, C.-W.; Hsieh, K.-Y.; Hsieh, S.-Y.; Hsiao, H.-C. A Dynamic Data Placement Strategy for Hadoop in Heterogeneous Environments. Big Data Res. 2014, 1, 14–22. [Google Scholar] [CrossRef]
- Ubarhande, V.; Popescu, A.-M.; Gonzalez-Velez, H. Novel Data-Distribution Technique for Hadoop in Heterogeneous Cloud Environments. In Proceedings of the 2015 Ninth International Conference on Complex, Intelligent, and Software Intensive Systems, Santa Catarina, Brazil, 8–10 July 2015; pp. 217–224. [Google Scholar] [CrossRef]
- Sujitha, S.; Jaganathan, S. Aggrandizing Hadoop in terms of node Heterogeneity & Data Locality. In Proceedings of the IEEE International Conference on Smart Structures and Systems (ICSSS)’13, Chennai, India, 28–29 March 2013; pp. 145–151. [Google Scholar] [CrossRef]
- Guo, Z.; Fox, G.; Zhou, M. Investigation of Data Locality in MapReduce. In Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012); Institute of Electrical and Electronics Engineers (IEEE), Ottawa, ON, Canada, 13–16 May 2012; pp. 419–426. [Google Scholar]
- Chen, Y.; Liu, Z.; Wang, T.; Wang, L. Load Balancing in MapReduce Based on Data Locality; Springer: Cham, Switzerland, 2014; pp. 229–241. [Google Scholar] [CrossRef]
- Chen, T.-Y.; Wei, H.-W.; Wei, M.-F.; Chen, Y.-J.; Hsu, T.-S.; Shih, W.-K. LaSA: A locality-aware scheduling algorithm for Hadoop-MapReduce resource assignment. In Proceedings of the 2013 International Conference on Collaboration Technologies and Systems (CTS), San Diego, CA, USA, 20–24 May 2013; pp. 342–346. [Google Scholar] [CrossRef]
- Park, J.; Lee, D.; Kim, B.; Huh, J.; Maeng, S. Locality-aware dynamic VM reconfiguration on MapReduce clouds. In Proceedings of the 21st international symposium on High-Performance Parallel and Distributed Computing—HPDC ’12, New York, NY, USA, 18–22 June 2012; pp. 27–36. [Google Scholar] [CrossRef] [Green Version]
- Zaharia, M.; Borthakur, D.; Sarma, J.S.; Elmeleegy, K.; Shenker, S.; Stoica, I. Delay Scheduling: A Simple Technique for Achieving Locality and Fairness in Cluster Scheduling. In Proceedings of the 5th European conference on Computer systems, New York, NY, USA, 13–16 April 2010. [Google Scholar]
- Zhang, X.; Feng, Y.; Feng, S.; Fan, J.; Ming, Z. An effective data locality aware task scheduling method for MapReduce framework in heterogeneous environments. In Proceedings of the 2011 International Conference on Cloud and Service Computing, Hong Kong, China, 12–14 December 2011; pp. 235–242. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Slagter, K.D.; Chung, Y.-C. Locality and loading aware virtual machine mapping techniques for optimizing communications in MapReduce applications. Futur. Gener. Comput. Syst. 2015, 53, 43–54. [Google Scholar] [CrossRef]
- Xue, R.; Gao, S.; Ao, L.; Guan, Z. BOLAS: Bipartite-Graph Oriented Locality-Aware Scheduling for MapReduce Tasks. In Proceedings of the 2015 14th International Symposium on Parallel and Distributed Computing, Washington, DC, USA, 29 June–2 July 2015; pp. 37–45. [Google Scholar] [CrossRef]
- Sadasivam, G.S.; Selvaraj, D. A novel parallel hybrid PSO-GA using MapReduce to schedule jobs in Hadoop data grids. In Proceedings of the 2010 Second World Congress on Nature and Biologically Inspired Computing (NaBIC), Fargo, ND, USA, 12–14 August 2010; pp. 377–382. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, Y.; Zhao, C. MrHeter: Improving MapReduce performance in heterogeneous environments. Clust. Comput. 2016, 19, 1691–1701. [Google Scholar] [CrossRef]
- Guo, L.; Sun, H.; Luo, Z. A Data Distribution Aware Task Scheduling Strategy for MapReduce System; Springer: Berlin/Heidelberg, Germany, 2009; pp. 694–699. [Google Scholar] [CrossRef]
- Hammoud, M.; Sakr, M.F. Locality-Aware Reduce Task Scheduling for MapReduce. In Proceedings of the 2011 IEEE Third International Conference on Cloud Computing Technology and Science, Athens, Greece, 29 November–1 December 2011; pp. 570–576. [Google Scholar] [CrossRef]
- Ahmad, F.; Chakradhar, S.T.; Raghunathan, A.; Vijaykumar, T.N. Tarazu. In Proceedings of the Seventeenth International Conference on Architectural Support for Programming Languages and Operating Systems—ASPLOS ’12, London, UK, 3–7 March 2012; Volume 40, p. 61. [Google Scholar] [CrossRef]
- Kumar, K.A.; Konishetty, V.K.; Voruganti, K.; Rao, G.V.P. CASH. In Proceedings of the International Conference on Advances in Computing, Communications and Informatics—ICACCI ’12, Chennai, India, 3–5 August 2012; p. 52. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, W.; Meng, D.; Lv, Y.; Zhang, S.; Li, J. TDWS: A Job Scheduling Algorithm Based on MapReduce. In Proceedings of the 2012 IEEE Seventh International Conference on Networking, Architecture, and Storage, Fujian, China, 28–30 June 2012; pp. 313–319. [Google Scholar] [CrossRef]
- Hammoud, M.; Rehman, M.S.; Sakr, M.F. Center-of-Gravity Reduce Task Scheduling to Lower MapReduce Network Traffic. In Proceedings of the 2012 IEEE Fifth International Conference on Cloud Computing, Honolulu, HI, USA, 24–29 June 2012; pp. 49–58. [Google Scholar] [CrossRef]
- Ibrahim, S.; Jin, H.; Lu, L.; He, B.; Antoniu, G.; Wu, S. Maestro: Replica-Aware Map Scheduling for MapReduce. In Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), Ottawa, Canada, 13–16 May 2012; pp. 435–442. [Google Scholar] [CrossRef]
- Sethi, K.K.; Ramesh, D. Delay Scheduling with Reduced Workload on JobTracker in Hadoop; Springer: Cham, Switzerland, 2015; pp. 371–381. [Google Scholar] [CrossRef]
- Yang, Y.; Xu, J.; Wang, F.; Ma, Z.; Wang, J.; Li, L. A MapReduce Task Scheduling Algorithm for Deadline-Constraint in Homogeneous Environment. In Proceedings of the 2014 Second International Conference on Advanced Cloud and Big Data, Huangshan, China, 20–22 November 2014; pp. 208–212. [Google Scholar] [CrossRef]
- Bezerra, A.; Hernández, P.; Espinosa, A.; Moure, J.C. Job scheduling for optimizing data locality in Hadoop clusters. In Proceedings of the 20th European MPI Users’ Group Meeting on—EuroMPI ’13, Madrid, Spain, 15–18 September 2013; pp. 271–276. [Google Scholar] [CrossRef]
- Sun, M.; Zhuang, H.; Li, C.; Lu, K.; Zhou, X. Scheduling algorithm based on prefetching in MapReduce clusters. Appl. Soft Comput. 2016, 38, 1109–1118. [Google Scholar] [CrossRef] [Green Version]
- Zaharia, M.; Chowdhury, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Spark: Cluster computing with working sets. In Proceedings of the 2nd USENIX conference on Hot topics in cloud computing. USENIX Association, Boston, MA, USA, 22–25 June 2010; p. 10. [Google Scholar]
- Hess, K. Hadoop vs Spark: Comparison, Features & Cost. Available online: https://www.datamation.com/data-center/hadoop-vs-spark/ (accessed on 16 June 2022).
- Marr, B. Spark Or Hadoop—Which Is The Best Big Data Framework? Available online: https://www.forbes.com/sites/bernardmarr/2015/06/22/spark-or-hadoop-which-is-the-best-big-data-framework/?sh=33f70d3c127e (accessed on 5 June 2021).
- Li, S.; Amin, T.; Ganti, R.; Srivatsa, M.; Hu, S.; Zhao, Y.; Abdelzaher, T. Stark: Optimizing In-Memory Computing for Dynamic Dataset Collections. In Proceedings of the 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA, 5–8 June 2017; pp. 103–114. [Google Scholar] [CrossRef]
- Engle, C.; Lupher, A.; Xin, R.; Zaharia, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Shark. In Proceedings of the 2012 International Cconference on Management of Data—SIGMOD ’12, Scottsdale, AZ, USA, 20–24 May 2012; p. 689. [Google Scholar] [CrossRef]
- Santos-Neto, E.; Cirne, W.; Brasileiro, F.; Lima, A. Exploiting Replication and Data Reuse to Efficiently Schedule Da-ta-Intensive Applications on Grids; Springer: Berlin/Heidelberg, Germany, 2005; pp. 210–232. [Google Scholar]
- Xin, R.S.; Gonzalez, J.E.; Franklin, M.J.; Stoica, I. GraphX. In Proceedings of the First International Workshop on Graph Data Management Experiences and Systems—GRADES ’13, New York, NY, USA, 24 June 2013; pp. 1–6. [Google Scholar] [CrossRef]
- Goldstein, J.; Ramakrishnan, R.; Shaft, U. Compressing relations and indexes. In Proceedings of the 14th International Conference on Data Engineering, Orlando, FL, USA, 6 August 2002; pp. 370–379. [Google Scholar] [CrossRef] [Green Version]
- Larus, J.; Hill, M.; Chilimbi, T. Making pointer-based data structures cache conscious. Computer 2000, 33, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Abadi, D.J.; Madden, S.R.; Hachem, N. Column-stores vs. row-stores. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data—SIGMOD ’08, Vancouver, BC, Canada, 10–12 June 2008; pp. 967–980. [Google Scholar] [CrossRef]
- Plattner, H. A common database approach for OLTP and OLAP using an in-memory column database. In Proceedings of the 35th SIGMOD International Conference on Management of Data—SIGMOD ’09, New York, NY, USA, 29 June–2 July 2009; pp. 1–2. [Google Scholar] [CrossRef]
- Copeland, G.P.; Khoshafian, S.N. A decomposition storage model. In Proceedings of the 1985 ACM SIGMOD international conference on Management of data—SIGMOD ’85, Austin, TX, USA, 1 May 1985; Volume 14, pp. 268–279. [Google Scholar] [CrossRef]
- Kim, C.; Chhugani, J.; Satish, N.; Sedlar, E.; Nguyen, A.D.; Kaldewey, T.; Lee, V.W.; Brandt, S.A.; Dubey, P. Designing fast architecture-sensitive tree search on modern multicore/many-core processors. ACM Trans. Database Syst. 2011, 36, 1–34. [Google Scholar] [CrossRef]
- Leis, V.; Kemper, A.; Neumann, T. The adaptive radix tree: ARTful indexing for main-memory databases. In Proceedings of the 2013 IEEE 29th International Conference on Data Engineering (ICDE), Brisbane, Australia, 8–12 April 2013; pp. 38–49. [Google Scholar] [CrossRef] [Green Version]
- Maas, L.M.; Kissinger, T.; Habich, D.; Lehner, W. BUZZARD. In Proceedings of the 2013 International Conference on Management of Data—SIGMOD ’13, New York, NY, USA, 22–27 June 2013; pp. 1285–1286. [Google Scholar] [CrossRef]
- Albutiu, M.-C.; Kemper, A.; Neumann, T. Massively parallel sort-merge joins in main memory multi-core database systems. Proc. VLDB Endow. 2012, 5, 1064–1075. [Google Scholar] [CrossRef] [Green Version]
- Leis, V.; Boncz, P.; Kemper, A.; Neumann, T. Morsel-driven parallelism. In Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data—SIGMOD ’14, Snowbird, UT, USA, 19 September 2014; pp. 743–754. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Pandis, I.; Mueller, R.; Raman, V.; Lohman, G. NUMA-aware algorithms: The case of data shuffling. In Proceedings of the Sixth Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA, 6–9 January 2013. [Google Scholar]
- Burr, G.W.; Breitwisch, M.J.; Franceschini, M.; Garetto, D.; Gopalakrishnan, K.; Jackson, B.; Kurdi, B.; Lam, C.; Lastras, L.A.; Padilla, A.; et al. Phase change memory technology. J. Vac. Sci. Technol. B 2010, 28, 223–262. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.J.; Williams, S. Memristive devices in computing system. ACM J. Emerg. Technol. Comput. Syst. 2013, 9, 1–20. [Google Scholar] [CrossRef]
- Apalkov, D.; Khvalkovskiy, A.; Watts, S.; Nikitin, V.; Tang, X.; Lottis, D.; Moon, K.; Luo, X.; Chen, E.; Ong, A.; et al. Spin-transfer torque magnetic random access memory (STT-MRAM). ACM J. Emerg. Technol. Comput. Syst. 2013, 9, 1–35. [Google Scholar] [CrossRef]
- Shi, X.; Chen, M.; He, L.; Xie, X.; Lu, L.; Jin, H.; Chen, Y.; Wu, S. Mammoth: Gearing Hadoop Towards Memory-Intensive MapReduce Applications. IEEE Trans. Parallel Distrib. Syst. 2014, 26, 2300–2315. [Google Scholar] [CrossRef]
- Power, R.; Li, J. Piccolo: Building fast, distributed programs with partitioned tables. In Proceedings of the 9th USENIX conference on Operating systems design and implementation, Vancouver, BC, Canada, 4–6 October 2010; pp. 293–306. [Google Scholar]
- Neumeyer, L.; Robbins, B.; Nair, A.; Kesari, A. S4: Distributed stream computing platform. In Proceedings of the IEEE International Conference on Data Mining, ICDM, Sydney, NSW, Australia, 13 December 2010; pp. 170–177. [Google Scholar] [CrossRef]
- Condie, T.; Conway, N.; Alvaro, P.; Hellerstein, J.M.; Elmeleegy, K.; Sears, R. MapReduce online. In Proceedings of the 7th USENIX Conference on Networked Systems Design and Implementation. USENIX Association, San Jose, CA, USA, 28–30 April 2010; p. 21. [Google Scholar]
- Sikka, V.; Färber, F.; Goel, A.; Lehner, W. SAP HANA. Proc. VLDB Endow. 2013, 6, 1184–1185. [Google Scholar] [CrossRef] [Green Version]
- Lahiri, T.; Neimat, M.-A.; Folkman, S. Oracle TimesTen: An In-Memory Database for Enterprise Applications. IEEE Data Eng. Bull. 2013, 36, 6–13. [Google Scholar]
- Lindström, J.; Lindström, J.; Raatikka, V.; Ruuth, J.; Soini, P.; Vakkila, K. IBM solidDB: In-Memory Database Optimized for Extreme Speed and Availability. IEEE Data Eng. Bull. 2013, 36, 14–20. [Google Scholar]
- Raman, V.; Attaluri, G.; Barber, R.; Chainani, N.; Kalmuk, D.; KulandaiSamy, V.; Leenstra, J.; Lightstone, S.; Liu, S.; Lohman, G.M.; et al. DB2 with BLU acceleration. Proc. VLDB Endow. 2013, 6, 1080–1091. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Chen, G.; Ooi, B.C.; Wong, W.-F.; Wu, S.; Xia, Y. Anti-Caching-based elastic memory management for Big Data. In Proceedings of the 2015 IEEE 31st International Conference on Data Engineering, Seoul, Republic of Korea, 13–17 April 2015; pp. 1268–1279. [Google Scholar] [CrossRef]
- Gandhi, R.; Gupta, A.; Povzner, A.; Belluomini, W.; Kaldewey, T. Mercury. In Proceedings of the 6th International Systems and Storage Conference on—SYSTOR ’13, Haifa, Israel, 2–4 June 2013; p. 1. [Google Scholar] [CrossRef]
- Bishop, B.; Kiryakov, A.; Ognyanoff, D.; Peikov, I.; Tashev, Z.; Velkov, R. OWLIM: A family of scalable semantic repositories. Semantic Web 2011, 2, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Memcached A distributed memory object caching system. Available online: https://memcached.org/ (accessed on 18 July 2022).
- Ananthanarayanan, G.; Ghodsi, A.; Wang, A.; Borthakur, D.; Kandula, S.; Shenker, S.; Stoica, I. PACMan: Coordinated memory caching for parallel jobs. In Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation. USENIX Association, San Jose, CA, USA, 25–27 April 2012; p. 20. [Google Scholar]
- Chang, F.; Dean, J.; Ghemawat, S.; Hsieh, W.C.; Wallach, D.A.; Burrows, M.; Chandra, T.; Fikes, A.; Gruber, R.E. Bigtable: A Distributed Storage System for Structured Data. In Proceeding of the 7th Symposium on Operating Systems Design and Implementation, Seattle, WA, USA, 6–8 November 2006. [Google Scholar] [CrossRef]
- Martinec, J.; Rango, A.; Major, E. The Snowmelt-Runoff Model (SRM) User’s Manual; New Mexico State University: Las Cruces, NM, USA, 1983. [Google Scholar]
- Rajasekar, A.; Moore, R.; Hou, C.-Y.; Lee, C.A.; Marciano, R.; de Torcy, A.; Wan, M.; Schroeder, W.; Chen, S.-Y.; Gilbert, L.; et al. iRODS Primer: Integrated Rule-Oriented Data System. Synth. Lect. Inf. Concepts Retr. Serv. 2010, 2, 1–143. [Google Scholar] [CrossRef] [Green Version]
- Plimpton, S.J.; Devine, K.D. MapReduce in MPI for Large-scale graph algorithms. Parallel Comput. 2011, 37, 610–632. [Google Scholar] [CrossRef]
- Mantha, P.K.; Luckow, A.; Jha, S. Pilot-MapReduce. In Proceedings of the third international workshop on MapReduce and its Applications Date - MapReduce ’12, Delft, The Netherlands, 18–19 June 2012; pp. 17–24. [Google Scholar] [CrossRef]
- Schwan, P.; Schwan, P. Lustre: Building a file system for 1000-node clusters. PROC. 2003 LINUX Symp. 2003, 2003, 380–386. [Google Scholar]
- Owre, S.; Shankar, N.; Rushby, J.M.; Stringer-Calvert, D.W.J. PVS System Guide. SRI Int. 2001, 1, 7. [Google Scholar]
- Jeannot, E.; Mercier, G.; Tessier, F. Process Placement in Multicore Clusters:Algorithmic Issues and Practical Techniques. IEEE Trans. Parallel Distrib. Syst. 2014, 25, 993–1002. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y. Smart: A MapReduce-Like Framework for In-Situ Scientific Analytics. In Proceedings of the SC ’15: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, Austin, TX, USA, 15–20 November 2015. [Google Scholar]
- Xu, C.; Goldstone, R.; Liu, Z.; Chen, H.; Neitzel, B.; Yu, W. Exploiting Analytics Shipping with Virtualized MapReduce on HPC Backend Storage Servers. IEEE Trans. Parallel Distrib. Syst. 2015, 27, 185–196. [Google Scholar] [CrossRef]
- Mimi, L. OLCF Group to Offer Spark On-Demand Data Analysis. Available online: https://www.olcf.ornl.gov/2016/03/29/olcf-group-to-offer-spark-on-demand-data-analysis/ (accessed on 15 June 2022).
- Apache Hadoop C API libhdfs. Available online: https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/LibHdfs.html (accessed on 5 May 2022).
- Jin, H.; Ji, J.; Sun, X.-H.; Chen, Y.; Thakur, R. CHAIO: Enabling HPC Applications on Data-Intensive File Systems. In Proceedings of the 2012 41st International Conference on Parallel Processing, Pittsburgh, PA, USA, 10–13 September 2012; pp. 369–378. [Google Scholar] [CrossRef] [Green Version]
- Hoefler, T.; Lumsdaine, A.; Dongarra, J. Towards Efficient MapReduce Using MPI; Springer: Berlin/Heidelberg, Germany, 2009; pp. 240–249. [Google Scholar] [CrossRef] [Green Version]
- Matsunaga, A.; Tsugawa, M.; Fortes, J. CloudBLAST: Combining MapReduce and Virtualization on Distributed Resources for Bioinformatics Applications. In Proceedings of the 2008 IEEE Fourth International Conference on eScience, Indianapolis, IN, USA, 7–12 December 2008; pp. 222–229. [Google Scholar] [CrossRef]
- HTCondor—High Throughput Computing. Available online: https://research.cs.wisc.edu/htcondor/ (accessed on 20 June 2022).
- Zhang, Z.; Barbary, K.; Nothaft, F.A.; Sparks, E.; Zahn, O.; Franklin, M.J.; Patterson, D.A.; Perlmutter, S. Scientific computing meets big data technology: An astronomy use case. In Proceedings of the 2015 IEEE International Conference on Big Data (Big Data), Santa Clara, CA, USA, 29 October–1 November 2015; pp. 918–927. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Wang, B.; Zha, L.; Xu, Z. Can MPI Benefit Hadoop and MapReduce Applications? In Proceedings of the 2011 40th International Conference on Parallel Processing Workshops, Taipei City, Taiwan, 13–16 September 2011; pp. 371–379. [Google Scholar] [CrossRef]
- Veiga, J.; Exp, R.R.; Taboada, G.L.; Touri, J. Analysis and Evaluation of MapReduce Solutions on an HPC Cluster. Comput. Electr. Eng. 2015, 50, 200–2016. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, H.; Marchand-Maillet, S. Enhancing MapReduce Using MPI and an Optimized Data Exchange Policy. In Proceedings of the 2012 41st International Conference on Parallel Processing Workshops, Pittsburgh, PA, USA, 10–13 September 2012; pp. 11–18. [Google Scholar] [CrossRef]
- Ranger, C.; Raghuraman, R.; Penmetsa, A.; Bradski, G.; Kozyrakis, C. Evaluating MapReduce for Multi-core and Multiprocessor Systems. In Proceedings of the 2007 IEEE 13th International Symposium on High Performance Computer Architecture, Scottsdale, AZ, USA, 10–14 February 2007; pp. 13–24. [Google Scholar] [CrossRef]
- Lu, X.; Rahman, W.U.; Islam, N.; Shankar, D.; Panda, D.K. Accelerating Spark with RDMA for Big Data Processing: Early Experiences. In Proceedings of the 2014 IEEE 22nd Annual Symposium on High-Performance Interconnects, Mountain View, CA, USA, 26–28 August 2014; pp. 9–16. [Google Scholar] [CrossRef]
- Lu, X.; Liang, F.; Wang, B.; Zha, L.; Xu, Z. DataMPI: Extending MPI to Hadoop-Like Big Data Computing. In Proceedings of the 2014 IEEE 28th International Parallel and Distributed Processing Symposium, Phoenix, AZ, USA, 19–23 May 2014; pp. 829–838. [Google Scholar] [CrossRef]
- Wang, Y.; Jiao, Y.; Xu, C.; Li, X.; Wang, T.; Que, X.; Cira, C.; Wang, B.; Liu, Z.; Bailey, B.; et al. Assessing the Performance Impact of High-Speed Interconnects on MapReduce; Springer: Berlin/Heidelberg, Germany, 2014; pp. 148–163. [Google Scholar] [CrossRef]
- Yu, W.; Wang, Y.; Que, X. Design and Evaluation of Network-Levitated Merge for Hadoop Acceleration. IEEE Trans. Parallel Distrib. Syst. 2013, 25, 602–611. [Google Scholar] [CrossRef]
- Woodie, A. Does InfiniBand Have a Future on Hadoop? HPC Wire 2015. [Google Scholar]
- Unstructured Data Accelerator (UDA). Available online: https://format.com.pl/site/wp-content/uploads/2015/09/sb_hadoop.pdf (accessed on 4 January 2022).
- Mellanox Technologies: End-to-End InfiniBand and Ethernet Interconnect Solutions and Services. Available online: http://www.mellanox.com/ (accessed on 23 November 2022).
- Chu, V.K.J. Transmission of IP over InfiniBand (IPoIB). Available online: https://www.rfc-editor.org/rfc/rfc4391.html (accessed on 25 November 2021).
- Woodie, A. Unravelling Hadoop Performance Mysteries. Available online: https://www.enterpriseai.news/2014/11/20/unravelling-hadoop-performance-mysteries/ (accessed on 17 June 2022).
- Islam, N.S.; Lu, X.; Rahman, W.U.; Panda, D.K. Can Parallel Replication Benefit Hadoop Distributed File System for High Performance Interconnects? In Proceedings of the 2013 IEEE 21st Annual Symposium on High-Performance Interconnects, San Jose, CA, USA, 21–23 August 2013; pp. 75–78. [Google Scholar] [CrossRef]
- Rahman, W.U.; Islam, N.S.; Lu, X.; Jose, J.; Subramoni, H.; Wang, H.; Panda, D.K.D. High-Performance RDMA-based Design of Hadoop MapReduce over InfiniBand. In Proceedings of the 2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum, Cambridge, MA, USA, 20–24 May 2013; pp. 1908–1917. [Google Scholar] [CrossRef]
- Islam, N.S.; Rahman, M.W.; Jose, J.; Rajachandrasekar, R.; Wang, H.; Subramoni, H.; Murthy, C.; Panda, D.K. High performance RDMA-based design of HDFS over InfiniBand. In Proceedings of the 2012 International Conference for High Performance Computing, Networking, Storage and Analysis, Atlanta, GA, USA, 14–19 November 2012; pp. 1–12. [Google Scholar] [CrossRef]
- Lu, X.; Islam, N.S.; Rahman, W.U.; Jose, J.; Subramoni, H.; Wang, H.; Panda, D.K. High-Performance Design of Hadoop RPC with RDMA over InfiniBand. In Proceedings of the 2013 42nd International Conference on Parallel Processing, Lyon, France, 1–4 October 2013; pp. 641–650. [Google Scholar] [CrossRef]
- Turilli, M.; Santcroos, M.; Jha, S. A Comprehensive Perspective on Pilot-Job Systems. ACM Comput. Surv. 2019, 51, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.; Nelson, M. Moving ahead with Hadoop YARN. Available online: https://www.ibm.com/developerworks/library/bd-hadoopyarn/ (accessed on 16 May 2018).
- Petcu, D.; Iuhasz, G.; Pop, D.; Talia, D.; Carretero, J.; Prodan, R.; Fahringer, T.; Grasso, I.; Doallo, R.; Martin, M.J.; et al. On Processing Extreme Data. Scalable Comput. Pr. Exp. 2016, 16, 467–490. [Google Scholar] [CrossRef]
- Da Costa, G.; Fahringer, T.; Gallego, J.A.R.; Grasso, I.; Hristov, A.; Karatza, H.D.; Lastovetsky, A.; Marozzo, F.; Petcu, D.; Stavrinides, G.L.; et al. Exascale Machines Require New Programming Paradigms and Runtimes. Supercomput. Front. Innov. 2015, 2, 6–27. [Google Scholar] [CrossRef] [Green Version]
- Usman, S.; Mehmood, R.; Katib, I.; Albeshri, A.; Altowaijri, S.M. ZAKI: A Smart Method and Tool for Automatic Per-formance Optimization of Parallel SpMV Computations on Distributed Memory Machines. Mob. Networks Appl. 2019. [Google Scholar] [CrossRef]
- Usman, S.; Mehmood, R.; Katib, I.; Albeshri, A. ZAKI+: A Machine Learning Based Process Mapping Tool for SpMV Computations on Distributed Memory Architectures. IEEE Access 2019, 7, 81279–81296. [Google Scholar] [CrossRef]
- Emani, M.K.; Wang, Z.; O’Boyle, M.F.P. Smart, adaptive mapping of parallelism in the presence of external workload. In Proceedings of the 2013 IEEE/ACM International Symposium on Code Generation and Optimization (CGO), Washington, DC, USA, 23–27 February 2013; pp. 1–10. [Google Scholar] [CrossRef] [Green Version]
- Diener, M. Automatic Task and Data Mapping in Shared Memory Architectures; Technische Universität Berlin: Berlin, Germany, 2015. [Google Scholar]
- Subramoni, H. Topology-Aware MPI Communication and Scheduling for High Performance Computing Systems; Computer Science and Engineering; Ohio State University: Columbus, OH, USA, 2013. [Google Scholar]
- Kulkarni, M.; Pingali, K.; Walter, B.; Ramanarayanan, G.; Bala, K.; Chew, L.P. Optimistic parallelism requires abstractions. In Proceedings of the 2007 ACM SIGPLAN Conference on Programming Language Design and Implementation—PLDI, New York, NY, USA, 10–13 June 2007; pp. 211–222. [Google Scholar] [CrossRef]
- Keutzer, K.; Mattson, T. Our Pattern Language—Our Pattern Language; WordPress, 2016. [Google Scholar]
- Mysore, S.J.D.; Khupat, S. Big data architecture and patterns, Part 1: Introduction to big data classification and architecture. IBM 2013. [Google Scholar]
- Zanoni, M.; Fontana, F.A.; Stella, F. On applying machine learning techniques for design pattern detection. J. Syst. Softw. 2015, 103, 102–117. [Google Scholar] [CrossRef]
- Dwivedi, A.K.; Tirkey, A.; Ray, R.B.; Rath, S.K. Software design pattern recognition using machine learning techniques. In Proceedings of the 2016 IEEE Region 10 Conference (TENCON), Singapore, 22–25 November 2017; pp. 222–227. [Google Scholar] [CrossRef]
HPC | Big Data | Convergence Challenges | |
---|---|---|---|
Parallel Programming Models | Majo et al. [67], Lezos et al. [68], Regan-Kelley et al. [69], X10 [71], Huang et al. [72], BSP [116], Pregel [118], including BSPLib [121], BSPonMPI [122], Bulk Synchronous Parallel ML (BSML), Multicore-BSP [123,124]. | Google File System GFS [192], Yang et al. [200], Map-iterative-reduce [202], Ekanayake et al. [197], Bu et al. [203], Spark [204], Olston et al. [206], SRM [275], iRODS [276], MapReduce-MPI [277], Pilot-MapReduce [278], Lustre [279], GPFS [192], PVS [280] |
|
Scheduling and Load Balancing | Ousterhout et al. [99], Falt et al. [103], Muddukrishna et al. [104], Ding et al. [105], Lifflander et al. [106], Xue et al. [107], Isard et al. [108], Maglalang et al. [109], Yoo et al. [110], Paidel et al. [111], Guo Yi [113], Hindman et al. [114], Isard et al. [115] | Guo et al. [170], Chen et al. [220], Chen et al. [221], Wang et al. [102], Park et al. [222], Zaharia et al. [223], Zhang et al. [224], Hsu et al. [225], Xue et al. [226], Sadasivam et al. [227], Zhang et al. [228], Guo et al. [229], Hammoud et al. [230], Ahmad et al. [231], Kumar et al. [232], Zhao et al. [233], Hammoud et al. [234], Ibrahim et al. [235], Mozakka et al. [37], Sethi et al. [236], Yang et al. [237], Bezerra et al. [238] |
|
Parallelism Mapping | Jeannot et al. [281], Rashti et al. [139], Hestness et al. [140], HU Chen et al. [141], Zhang et al. [142], Zarrinchain et al. [144], Guillaume et al. [145], Blue Gene systems [146,147,148], multicore networks [139,149,150], hybrid MPI/OpenMP mapping [151], mapping library [152], Grewe et al. [156], Tournavitis et al. [157], Wang et al. [158] | Map-Reduce [191], Hadoop [193], Map-iterative-reduce [202], Spark [204], Engle et al. [244], Olston et al. [206]. |
|
In situ Data Analysis | Tiwari et al. [165], Zheng et al. [166], Sewell et al. [167], Sriram et al. [168], Zou et al. [169], Kim et al. [170], Sriram et al. [171], Yu Su et al. [172], Karimabadi et al. [173], Yu et al. [174], Zou et al. [175], Woodring et al. [176], Nouanesengsy et al. [177], Landge et al. [178], Zhang et al. [179] | Wang et al. [282], Xu et al. [283], [165], Wang et al. [282], Xu et al. [283], Spark on demand [284]. |
|
Locality-aware Partitioning | Zhang et al. [33], NUMA data shuffling [257], data partitioning [254,255,256], NVRAM Memristive devices [259] STT-MRAM [260], | Lin et al. [207], Ibrahim et al. [208], Rhine et al. [209] |
|
Data Placement | Eltabakh et al. [161], Yu et al. [162], Tan et al. [163], Wang et al. [164], Xie et al. [214], Arasanal et al. [215], Wei Lee [216], Ubarhande et al. [217], Sujitha et al. [218] |
| |
In-Memory Computation | Sun et al. [239], Shen Li et al. [243], Engle et al. [244], Sentos-Neto et al. [245], Reynold et al. [246], In Memory Data Processing Systems Spark [240], Mammoth [261], Piccolo [262], S4 [263], Map-reduce online [264]. |
| |
Cache-centric Optimization | Compression [247], coloring [248], decomposition storage model [251], re-organizing data layouts [252,253], Gupta et al. [73], Gonzalez et al. [74], on-chip caching [75,76], data access frequency [77,78], Kennedy et al. [93], Sparsh Mittal [94]. |
|
Convergence | Convergence Efforts | Challenges/Future Directions |
---|---|---|
MPI with Map-Reduce | Hoefler et al. [287], MPI, ad-hoc Hadoop [193], CloudBlast [288], HTCondor [289], Zhang et al. [290], Lu et al. [291], DataMPI [292], Mohamed et al. [293], Pilot-Jobs [308], Pregel [118], Apache Hama [119] and Giraph [120], SRM [275], iRODS [276], MapReduce-MPI [277], Pilot-MapReduce [278]. |
|
Map-Reduce with High-Performance Interconnects | DataMPI [296], [240], Yandang et al. [297], Yu et al. [298], Dhabaleshwar. K Panda [299], Mellanox UDA [300,301], IP over InfiniBand (IPoIB) [302], Aloja [303], Islam et al. [304], Lu et al. [295], Wasi-ur-Rehman et al. [305], Islam et al. [306], Lu et al. [307] |
|
In Situ Analysis | Wang et al. [282], Xu et al. [283], Spark on demand [284]. |
|
Big Data | HPC | |
---|---|---|
Programming Model | Java Applications, SparQL | Fortran, C, C++ |
High-level Programming | Pig, Hive, Drill | Domain-specific Language |
Parallel run time | Map-reduce | MPI, Open MP, OpenCL |
Data Management | HBase, MySQL | iRODS |
Scheduling (Resource Management) | YARN | SLRUM (Simple LINUX utility for resource management) |
File system | HDFS, SPARK (Local storage) | LUSTRE (Remote storage) |
Storage | Local shared-nothing architecture | Remote shared parallel storage |
Hardware for Storage | HDDS | SSD |
Interconnect | Switch Ethernet | Switch Fiber |
Infrastructure | Cloud | Supercomputer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Usman, S.; Mehmood, R.; Katib, I.; Albeshri, A. Data Locality in High Performance Computing, Big Data, and Converged Systems: An Analysis of the Cutting Edge and a Future System Architecture. Electronics 2023, 12, 53. https://doi.org/10.3390/electronics12010053
Usman S, Mehmood R, Katib I, Albeshri A. Data Locality in High Performance Computing, Big Data, and Converged Systems: An Analysis of the Cutting Edge and a Future System Architecture. Electronics. 2023; 12(1):53. https://doi.org/10.3390/electronics12010053
Chicago/Turabian StyleUsman, Sardar, Rashid Mehmood, Iyad Katib, and Aiiad Albeshri. 2023. "Data Locality in High Performance Computing, Big Data, and Converged Systems: An Analysis of the Cutting Edge and a Future System Architecture" Electronics 12, no. 1: 53. https://doi.org/10.3390/electronics12010053
APA StyleUsman, S., Mehmood, R., Katib, I., & Albeshri, A. (2023). Data Locality in High Performance Computing, Big Data, and Converged Systems: An Analysis of the Cutting Edge and a Future System Architecture. Electronics, 12(1), 53. https://doi.org/10.3390/electronics12010053