Fibre Wireless Distributed Antenna Systems for 5G and 6G Services
Abstract
:1. Introduction
- (1)
- A RoF-based DAS network that is capable of supporting both 5G mm-Wave and 6G THz services at the same time is proposed.
- (2)
- The suggested design and method of operation would remain effective and useful, even if the 6G THz wireless system is utilized for point-to-point communication. In this case, we experimentally broadcast the single-carrier modulation 6G signal using 256-QAM modulation and a 5G new radio signal across a single mode fibre optic link.
- (3)
- The experimental trial is assessed in terms of error vector magnitude (EVM) and Carrier Suppression Ratio (CSR).
2. Industrial Distributed Antenna System Assisting 5G and 6G Services
3. Experimental Setup of A-RoF Based DAS
3.1. 5G and 6G Signals Generation
3.2. Optical Link
3.3. 5G/6G RAUs and Postprocessing
3.4. Peak Point Optimization
4. Experimental Results
Effect of Chromatic Dispersion and Power Fading
5. Challenges and Future Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nanni, J.; Polleux, J.-L.; Algani, C.; Rusticelli, S.; Perini, F.; Tartarini, G. VCSEL-based radio-over-G652 fibre system for short-/medium-range MFH solutions. J. Light. Technol. 2018, 36, 4430–4437. [Google Scholar] [CrossRef]
- Samon, B. Setting the Scene for 5G: Opportunities and Challenges; Report D-PREF-BB.5G; International Telecommunications Union: Geneva, Switzerland, 2018. [Google Scholar]
- Littmann, D.; Wilson, P.; Wigginton, C.; Hann, B.; Fritz, J. 5G: The Chance to Lead for a Decade; Deloitte Develop. LLC: Oakland, CA, USA, 2018. [Google Scholar]
- Tian, Y.; Lee, K.-L.; Lim, C.; Nirmalathas, A. 60 GHz Analog Radio-Over-Fiber Fronthaul Investigations. J. Light. Technol. 2017, 35, 4304–4310. [Google Scholar] [CrossRef]
- Tariq, F.; Khandaker, M.R.A.; Wong, K.-K.; Imran, M.A.; Bennis, M.; Debbah, M. A Speculative Study on 6G. IEEE Wirel. Commun. 2020, 27, 118–125. [Google Scholar] [CrossRef]
- Tataria, H.; Shafi, M.; Molisch, A.F.; Dohler, M.; Sjoland, H.; Tufvesson, F. 6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities. Proc. IEEE 2021, 109, 1166–1199. [Google Scholar] [CrossRef]
- International Telecommunications Union. IMT Traffic Estimates for the Years 2020 to 2030; Report ITU-R M.2370-0; International Telecommunications Union: Geneva, Switzerland, 2015. [Google Scholar]
- Kim, J.; Sung, M.; Cho, S.-H.; Won, Y.-J.; Lim, B.-C.; Pyun, S.-Y.; Lee, J.-K.; Lee, J.H. MIMO-supporting Radio-Over-Fiber system and its application in mmWave-based indoor 5G mobile network. J. Light. Technol. 2020, 38, 101–111. [Google Scholar] [CrossRef]
- Sung, M.; Kim, J.; Kim, E.-S.; Cho, S.-H.; Won, Y.-J.; Lim, B.-C.; Pyun, S.-Y.; Lee, H.; Lee, J.K.; Lee, J.H. RoF-based radio access network for 5G mobile communication systems in 28-GHz millimeter-wave. J. Light. Technol. 2020, 38, 409–420. [Google Scholar] [CrossRef]
- Hermelo, M.F.; Shih, P.-T.; Steeg, M.; Ng’Oma, A.; Stöhr, A. Spectral efficient 64-QAM-OFDM terahertz communication link. Opt. Express 2017, 25, 19360–19370. [Google Scholar] [CrossRef]
- Harter, T.; Füllner, C.; Kemal, J.N.; Ummethala, S.; Steinmann, J.L.; Brosi, M.; Hesler, J.L.; Bründermann, E.; Müller, A.-S.; Freude, W.; et al. Generalized Kramers–Kronig receiver for coherent terahertz communications. Nat. Photonics 2020, 14, 601–606. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Wang, K.; Zhou, W.; Zhang, J. Photonics-aided 2 × 2 MIMO wireless terahertz-wave signal transmission system with optical polarization multiplexing. Opt. Express 2017, 25, 33236–33242. [Google Scholar] [CrossRef]
- Jia, S.; Zhang, L.; Wang, S.; Li, W.; Qiao, M.; Lu, Z.; Idrees, N.M.; Pang, X.; Hu, H.; Zhang, X.; et al. 2 × 300 Gbit/s Line Rate PS-64QAM-OFDM THz Photonic-Wireless Transmission. J. Light. Technol. 2020, 38, 4715–4721. [Google Scholar] [CrossRef]
- Beas, J.; Castanon, G.; Aldaya, I.; Aragon-Zavala, A.; Campuzano, G. Millimeter-Wave Frequency Radio over Fiber Systems: A Survey. IEEE Commun. Surv. Tutor. 2013, 15, 1593–1619. [Google Scholar] [CrossRef]
- Perez, G.O.; Lopez, D.L.; Hernandez, J.A. 5G new radio fronthaul network design for eCPRI-IEEE 802.1CM and extreme latency percentiles. IEEE Access 2019, 7, 82218–82230. [Google Scholar] [CrossRef]
- Hadi, M.U.; Song, J.; Soman, S.K.O.; Rahimian, A.; Cheema, A.A. Experimental Evaluation of Hybrid Fibre–Wireless System for 5G Networks. Telecom 2022, 3, 218–233. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, R.; Shen, D.; Liu, T. Linearization Technologies for Broadband Radio-Over-Fiber Transmission Systems. Photonics 2014, 1, 455–472. [Google Scholar] [CrossRef]
- Vieira, L.; Gomes, N.J.; Nkansah, A.; van Dijk, F. Behavioral Modeling of Radio-Overfibre Links Using Memory Polynomials. In Proceedings of the 2010 IEEE Topical Meeting on Microwave Photonics (MWP), Montreal, QC, Canada, 5–9 October 2010; pp. 85–88. [Google Scholar]
- Hadi, M.U.; Awais, M.; Raza, M.; Ashraf, M.I.; Song, J. Experimental Demonstration and Performance Enhancement of 5G NR Multiband Radio over Fiber System Using Optimized Digital Predistortion. Appl. Sci. 2021, 11, 11624. [Google Scholar] [CrossRef]
- Nanni, J.; Giovannini, A.; Hadi, M.U.; Lenzi, E.; Rusticelli, S.; Wayth, R.; Perini, F.; Monari, J.; Tartarini, G. Controlling Rayleigh-Backscattering-Induced Distortion in Radio Over Fibre Systems for Radioastronomic Applications. J. Light. Technol. 2020, 38, 5393–5405. [Google Scholar] [CrossRef]
- Hadi, M.; Awais, M.; Raza, M.; Khurshid, K.; Jung, H. Neural Network DPD for Aggrandizing SM-VCSEL-SSMF-Based Radio over Fiber Link Performance. Photonics 2021, 8, 19. [Google Scholar] [CrossRef]
- Liu, S.; Alfadhli, Y.M.; Shen, S.; Tian, H.; Chang, G.K. Mitigation of Multi-User Access Impairments in 5G A-RoF-Based mobile-Fronthaul Utilizing Machine Learning for an Artificial Neural Network Nonlinear Equalizer. In Proceedings of the Optical Fibre Communication Conference, San Diego, CA, USA, 11–15 March 2018. [Google Scholar]
- Pereira, L.; Lopes, C.; Borges, R.; Lima, E.; Ferreira, A.; Abreu, M.; Mendes, L.; Arismar Cerqueira, S., Jr. Implementation of a multiband 5G NR fiber-wireless system using analog radio over fiber technology. Opt. Commun. 2020, 474, 126112. [Google Scholar] [CrossRef]
- Nanni, J.; Fernandez, L.; Hadi, M.U.; Viana, C.; Tegegne, Z.G.; Polleux, J.L.; Tartarini, G. Effect of system dynamics in multi-channel 850 nm VCSEL-based radio-over-G.652 fibre. Electron. Lett. 2020, 56, 385–388. [Google Scholar] [CrossRef]
- Hadi, M.U.; Jung, H.; Ghaffar, S.; Traverso, P.A.; Tartarini, G. Optimized digital radio over fiber system for medium range communication. Opt. Commun. 2019, 443, 177–185. [Google Scholar] [CrossRef]
- Xu, M.; Lu, F.; Wang, J.; Cheng, L.; Guidotti, D.; Chang, G.-K. Key technologies for next-generation digital RoF mobile fron-thaul with statistical data compression and multiband modulation. J. Light. Technol. 2017, 35, 3671–3679. [Google Scholar] [CrossRef]
- Yang, Y.; Lim, C.; Nirmalathas, A. Experimental Demonstration of Multi-Service Hybrid Fiber-Radio System Using Digitized RF-Over-Fiber Technique. J. Light. Technol. 2011, 29, 2131–2137. [Google Scholar] [CrossRef]
- Hadi, M.U. Mitigation of nonlinearities in analog radio over fiber links using machine learning approach. ICT Express 2021, 7, 253–258. [Google Scholar] [CrossRef]
- Wu, C.-Y.; Li, H.; Van Kerrebrouck, J.; Breyne, L.; Bogaert, L.; Demeester, P.; Torfs, G. Real-Time $4\times 3.5$ Gbps Sigma Delta Radio-over-Fiber for a Low-Cost 5G C-RAN Downlink. In Proceedings of the European Conference on Optical Communication (ECOC), Roma, Italy, 23–27 September 2018; pp. 1–3. [Google Scholar] [CrossRef]
- Li, H.; Bauwelinck, J.; Demeester, P.; Torfs, G.; Verplaetse, M.; Verbist, J.; Van Kerrebrouck, J.; Breyne, L.; Wu, C.-Y.; Bogaert, L.; et al. Real-Time 100-GS/s Sigma-Delta Modulator for All-Digital Radio-Over-Fiber Transmission. J. Light. Technol. 2020, 38, 386–393. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zeng, H.; Chand, N.; Effenberger, F. Efficient Mobile Fronthaul via DSP-Based Channel Aggregation. J. Light. Technol. 2015, 34, 1556–1564. [Google Scholar] [CrossRef]
- GPP TS 38.101-2; User Equipment (UE) Radio Transmission and Reception; Part 2: Range 2 Standalone. Version 17.4.0; ETSI: Sophia Antipolis, France, December 2021.
- Kim, E.-S.; Sung, M.; Lee, J.H.; Lee, J.K.; Cho, S.-H.; Kim, J. Coverage extension of indoor 5G network using RoF-based dis-tributed antenna system. IEEE Access 2020, 8, 194992–194999. [Google Scholar] [CrossRef]
- Hadi, M.U.; Jacobsen, T.; Abreu, R.; Kolding, T. Performance Analysis and Enhancements for Multipath Scenarios. In Proceedings of the 2021 IEEE Lat-in-American Conference on Communications (LATINCOM), Santo Domingo, Dominican Republic, 17–19 November 2021; pp. 1–5. [Google Scholar]
- Hadi, M.U.; Nanni, J.; Polleux, J.-L.; Traverso, P.A.; Tartarini, G. Direct digital predistortion technique for the compensation of laser chirp and fiber dispersion in long haul radio over fiber links. Opt. Quantum Electron. 2019, 51, 205. [Google Scholar] [CrossRef]
- Moon, S.-R.; Sung, M.; Kim, E.-S.; Lee, J.K.; Cho, S.-H.; Kim, J. RoF-based indoor distributed antenna system that can simul-taneously support 5G mmWave and 6G terahertz services. Opt. Express 2022, 30, 1521–1533. [Google Scholar] [CrossRef]
- Moon, S.-R.; Han, S.; Yoo, S.; Park, H.; Lee, W.-K.; Lee, J.K.; Park, J.; Yu, K.; Cho, S.-H.; Kim, J. Demonstration of photon-ics-aided terahertz wireless transmission system with using silicon photonics circuit. Opt. Express 2020, 28, 23397–23408. [Google Scholar] [CrossRef]
- 3GPP TR 38.901; Study on Channel Model for Frequencies from 0.5 to 100 GHz. Version 16.1.0; ETSI: Sophia Antipolis, France, 2019.
- Agrawal, G.P. Fiber-Optic Communication Systems. In Fiber-Optic Communication Systems, 4th ed.; Wiley: Hoboken, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Bogatyrev, V.; Bubnov, M.; Dianov, E.; Kurkov, A.; Mamyshev, P.; Prokhorov, A.; Rumyantsev, S.; Semenov, V.; Semenov, S.; Sysoliatin, A.; et al. A single-mode fiber with chromatic dispersion varying along the length. J. Light. Technol. 1991, 9, 561–566. [Google Scholar] [CrossRef] [Green Version]
- Meslener, G. Chromatic dispersion induced distortion of modulated monochromatic light employing direct detection. IEEE J. Quantum Electron. 1984, 20, 1208–1216. [Google Scholar] [CrossRef]
- Havstad, S.; Sahin, A.; Adamczyk, O.; Xie, Y.; Willner, A. Distance-independent microwave and millimeter-wave power fading compensation using a phase diversity configuration. IEEE Photonics Technol. Lett. 2000, 12, 1052–1054. [Google Scholar] [CrossRef]
- Borges, R.M.; Pereira, L.A.M.; Ferreira, A.C.; Mendes, L.L.; Spadoti, D.H.; Cerqueira Sodre, A., Jr. Fifth-generation new radio fiber-wireless system for long-reach and enhanced mobile broadband scenarios. Microw. Opt. Technol. Lett. 2021, 63, 662–669. [Google Scholar] [CrossRef]
- Khurshid, K.; Khan, A.A.; Siddiqui, M.H.; Hadi, M.U.; Rashid, I.; Imran, M. Optimality of Linear MIMO Detection for 5G Systems via 1-Opt Local Search. J. Electr. Eng. Technol. 2021, 16, 1099–1108. [Google Scholar] [CrossRef]
- Heni, W.; Baeuerle, B.; Mardoyan, H.; Jorge, F.; Estaran, J.M.; Konczykowska, A.; Riet, M.; Duval, B.; Nodjiadjim, V.; Goix, M.; et al. Ultra-High-Speed 2:1 Digital Selector and Plasmonic Modulator IM/DD Transmitter Operating at 222 GBaud for Intra-Datacenter Applications. J. Light. Technol. 2020, 38, 2734–2739. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Signal | = 1.14 × Hz = 12 × Hz F/G/O—FDM signal Modulation Data Rate = 256 QAM |
Laser Type | Wavelength = 1310 nm, = 1315 nm Mach Zehnder Modulator |
Fibre | SMF Link length = 10 km Fiber Dispersion = 16 Attenuation = 0.32 |
Photoreceiver | R402 PIN: = 0.84 A/W |
Filter | Bandpass Filter (∼1.5 nm and ∼12 dB/GHz) Lowpass Filter (1.14 GHz) |
Antenna | Directional Gain = 20 dBi 3dB Beamwidth = 23.71 deg Cross Pol. Isolation = 35 dB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadi, M.U.; Murtaza, G. Fibre Wireless Distributed Antenna Systems for 5G and 6G Services. Electronics 2023, 12, 64. https://doi.org/10.3390/electronics12010064
Hadi MU, Murtaza G. Fibre Wireless Distributed Antenna Systems for 5G and 6G Services. Electronics. 2023; 12(1):64. https://doi.org/10.3390/electronics12010064
Chicago/Turabian StyleHadi, Muhammad Usman, and Ghulam Murtaza. 2023. "Fibre Wireless Distributed Antenna Systems for 5G and 6G Services" Electronics 12, no. 1: 64. https://doi.org/10.3390/electronics12010064
APA StyleHadi, M. U., & Murtaza, G. (2023). Fibre Wireless Distributed Antenna Systems for 5G and 6G Services. Electronics, 12(1), 64. https://doi.org/10.3390/electronics12010064