Preparation and Optical Property of Far-Red LED Encapsulated with the Graded-Index Fluorescent Glass Film
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Spectral Properties of Fluorescent Powder
3.2. Spectral Property of Refractive Glass
3.3. Light-Transmission Process in Gradient Index Fluorescent Glass
- (1)
- The properties of photons are assumed to be stable. The parameters obtained for photons remain constant, and variations in wavelength and frequency are not considered.
- (2)
- Photon polarization phenomena are ignored, and the movement direction of the photons is considered to be in a straight line.
- (3)
- Effects of bubbles, impurities, and cracks on the scattering, absorption, and transmission of photons are ignored, assuming that there are no impurities in the medium.
3.4. Spectral Properties of Gradient Refractive Glass Encapsulated LED
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, X.; Li, B.; Guo, H.; Chen, D. Molybdenum-doping-induced photoluminescence enhancement in Eu3+-activated CaWO4 red-emitting phosphors for white light-emitting diodes. Dyes Pigm. 2017, 143, 86. [Google Scholar] [CrossRef]
- Mao, Z.; Chen, J.; Jian, L.; Wang, D. Dual-responsive Sr2SiO4:Eu2+-Ba3MgSi2O8:Eu2+, Mn2+ composite phosphor to human eyes and plant chlorophylls applications for general lighting and plant lighting. Chem. Eng. J. 2016, 284, 1003. [Google Scholar] [CrossRef]
- Li, L.; Pan, Y.; Chen, Z.; Huang, S.; Wu, M. Tunable luminescence and energy transfer properties of Bi3+ and Mn4+ co-doped Ca14Al10Zn6O35 phosphors for agricultural applications. RSC Adv. 2017, 7, 14868. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Zhang, H.; Zhang, H.; Xia, Z.; Liu, Y.; Molokeev, M.; Lei, B. Co-substitution in Ca1xYxAl12xMgxO19 phosphors: Local structure evolution, Photoluminescence tuning and application for plant growth LEDs. J. Mater. Chem. C 2018, 6, 4217. [Google Scholar] [CrossRef]
- Legendre, R.; van Iersel, M.W. Supplemental far-red light stimulates lettuce growth: Disentangling morphological and physiological effects. Plants 2021, 10, 166. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Shi, Q.; Yang, F.; Wei, M. Mixed red and blue light promotes tomato seedlings growth by influencing leaf anatomy, photosynthesis, CO2 assimilation and endogenous hormones. Sci. Hortic. 2021, 290, 110500. [Google Scholar] [CrossRef]
- Jin, W.; Urbina, J.L.; Heuvelink, E.; Marcelis, L.F. Adding far-red to red-blue light-emitting diode light promotes yield of lettuce at different planting densities. Front. Plant. Sci. 2021, 11, 609977. [Google Scholar] [CrossRef]
- Kusuma, P.; Bugbee, B.J. Far-red fraction: An improved metric for characterizing phytochrome effects on morphology. Am. Soc. Hortic. Sci. 2021, 146, 3. [Google Scholar] [CrossRef]
- Pust, P.; Schmidt, P.J.; Schnick, W. A revolution in lighting. Nat. Mater. 2015, 14, 454. [Google Scholar] [CrossRef]
- Lin, C.C.; Liu, R.S. Advances in phosphors for light-emitting diodes. J. Phys. Chem. Lett. 2011, 2, 1268. [Google Scholar] [CrossRef]
- Zhu, H.; Lin, C.C.; Luo, W.; Shu, S.; Liu, Z.; Liu, Y.; Kong, J.; Ma, E.; Cao, Y.; Liu, R.S.; et al. Highly efficient non-rare-earth red emitting phosphor for warm whitelight-emitting diodes. Nat. Commun. 2014, 5, 4312. [Google Scholar] [CrossRef] [Green Version]
- Danziger, N.; Bernstein, N. Light matters: Effect of light spectra on cannabinoid profile and plant development of medical cannabis (Cannabis sativa L.). Ind. Crops Prod. 2021, 164, 113351. [Google Scholar] [CrossRef]
- Pan, Z.; Zeng, K.; Huang, B.; Zhu, L.J. Synthesis of hydrogen-containing methyl phenyl silicone resins with a high refractive index for LED Encapsulation. Electron. Mater. 2020, 49, 4816. [Google Scholar] [CrossRef]
- Liu, E.; Hanss, A.; Schmid, M.; Elger, G. The influence of the phosphor layer as heat source and up-stream thermal masses on the thermal characterization by transient thermal analysis of modern wafer level high power LEDs. Microelectron. Reliab. 2016, 67, 29. [Google Scholar] [CrossRef]
- Zhu, Y.; Hu, J.; Hu, R.; Duan, B.; Luo, X. Thermal model of phosphor self-heating in phosphor-converted light-emitting diodes. ICEPT 2015, 16, 1090. [Google Scholar]
- Li, J.S.; Yan, C.M.; Li, Z.T.; Liang, G.W.; Tang, Y.; Yu, B.H. Color Uniformity Enhancement for WLEDs Using Inverted Dispensing Method. IEEE Photonic Technol. Lett. 2017, 29, 2079. [Google Scholar] [CrossRef]
- Ahn, S.H.; Nam, Y.H.; Han, K.; Im, W.B.; Cho, K.Y.; Chung, W.J. Phosphor-in-glass thick film formation with low sintering temperature phosphosilicate glass for robust white LED. J. Am. Ceram. Soc. 2017, 100, 1280. [Google Scholar] [CrossRef]
- Huang, P.; Luo, P.; Zhou, B.; Wang, L.; Jiang, W. Preparation and luminescence of transparent silica glass-ceramics containing LaF3:Eu3+ nanocrystals. Mater. Lett. 2020, 271, 127764. [Google Scholar] [CrossRef]
- Peng, Y.; Li, R.; Cheng, H.; Chen, Z.; Li, H.; Chen, M. Facile preparation of patterned phosphor-in-glass with excellent luminous properties through screen-printing for high-power white light-emitting diodes. J. Alloys Compd. 2017, 693, 279. [Google Scholar] [CrossRef]
- Cao, R.; Wu, L.; Di, X.; Li, P.; Hu, G.; Liang, X.; Xiang, W. A WLED based on LuAG:Ce3+ PiG coated red-emitting K2SiF6:Mn4+ phosphor by screen-printing. Opt. Mater. 2017, 70, 92. [Google Scholar] [CrossRef]
- Kim, L.; Shin, M.W. Thermal resistance measurement of LED package with multichips. IEEE Trans. Comp. Packag.Technol. 2007, 30, 632. [Google Scholar]
- Cao, R.; Zhang, F.; Xiao, H.; Chen, T.; Guo, S.; Zheng, G.; Yu, X.; Chen, T. Perovskite La2LiRO6: Mn4+ (R = Nb, Ta, Sb) Phosphors: Synthesis and Luminescence Properties. Inorg. Chim. Acta 2018, 483, 593. [Google Scholar] [CrossRef]
- Fu, L.; Yang, Y.; Zhang, Y.; Ren, X.; Zhu, Y.; Zhu, J.; Wu, Y.; Wang, J.; Feng, X. The novel Sr3LiSbO6: Mn4+, Ca2+ far-red-emitting phosphors with over 95% internal quantum efficiency for indoor plant growth LEDs. J. Lumin. 2021, 237, 118165. [Google Scholar] [CrossRef]
- Wang, L.; Yuan, L.; Xu, Y.; Zhou, R.; Qu, B.; Ding, N.; Shi, M.; Zhang, B.; Chen, Y.; Jiang, Y.; et al. Luminescent properties of La2LiTaO6:Mn4+ and its application as red emission LEDs phosphor. Appl. Phys. A 2014, 117, 1777. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, Y.; Su, C.; Zhan, J.; Fu, L.; Yang, Y.; Sun, X.; Wang, J.; Feng, X. High quantum efficiency and luminescence properties of far-red Sr3NaTaO6: Mn4+, Ba2+ phosphor for application in plant growth lighting LEDs. J. Lumin. 2022, 244, 118701. [Google Scholar] [CrossRef]
- Zhong, J.; Chen, D.; Chen, X.; Wang, K.; Li, X.; Zhu, Y.; Jia, Z. Efficient rare-earth free red-emitting Ca2YSbO6:Mn4+,M (M = Li+, Na+, K+, Mg2+) phosphors for white light-emitting diodes. Dalton Trans. 2018, 47, 6528. [Google Scholar] [CrossRef]
- Shi, L.; Han, Y.; Zhao, Y.; Li, M.; Geng, X.; Zhang, Z.; Wang, L. Synthesis and photoluminescence properties of novel Sr3LiSbO6:Mn4+ red phosphor for indoor plant growth. Opt. Mater. 2019, 89, 609. [Google Scholar] [CrossRef]
- Li, Y.; Yin, Y.; Wang, T.; Wu, J.; Zhang, J.; Yu, S.; Zhang, M.; Zhao, L.; Wang, W. Ultra-bright green-emitting phosphors with an internal quantum efficiency of over 90% for high-quality WLEDs. Dalton Trans. 2021, 50, 4159. [Google Scholar] [CrossRef] [PubMed]
- Fantone, S.D. Refractive index and spectral models for gradient-index materials. Appl. Opt. 1983, 22, 432. [Google Scholar] [CrossRef]
- Huang, Y.; Liang, X.G.; Xia, X.L. Monte Carlo simulation of radiative transfer in scattering, emitting, absorbing slab with gradient index. J. Quant. Spectrosc. Radiat. Transf. 2005, 92, 111. [Google Scholar] [CrossRef]
- Wang, J.; Elghoul, G.; Peters, S. Lead zirconium titanate alternatives for nanoactuators. IEEE Trans Ultrason Ferroelectr. Freq. Control. 2013, 60, 256. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; She, M.; Zhang, B.; Wang, X. Modeling and Monte Carlo simulation of photon transmission in glass-packaged WLEDs. Displays 2023, 78, 102431. [Google Scholar] [CrossRef]
Sample | CIE (x) | CIE (y) | CCT (K) | Luminous Efficiency (lm/W) |
---|---|---|---|---|
PIG-9-6-3 | x = 0.3385 | y = 0.3431 | 5235 | 96.74 |
PIG-9-9-9 | x = 0.3375 | y = 0.3389 | 5289 | 63.39 |
PIG-6-6-6 | x = 0.3389 | y = 0.3468 | 5204 | 65.31 |
PIG-3-3-3 | x = 0.3388 | y = 0.3452 | 5228 | 68.75 |
SI | x = 0.3299 | y = 0.3186 | 5605 | 59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, S.; Wang, B.; Wang, X.; Yan, X. Preparation and Optical Property of Far-Red LED Encapsulated with the Graded-Index Fluorescent Glass Film. Electronics 2023, 12, 3448. https://doi.org/10.3390/electronics12163448
Liang S, Wang B, Wang X, Yan X. Preparation and Optical Property of Far-Red LED Encapsulated with the Graded-Index Fluorescent Glass Film. Electronics. 2023; 12(16):3448. https://doi.org/10.3390/electronics12163448
Chicago/Turabian StyleLiang, Shihong, Bin Wang, Xiangfu Wang, and Xiaohong Yan. 2023. "Preparation and Optical Property of Far-Red LED Encapsulated with the Graded-Index Fluorescent Glass Film" Electronics 12, no. 16: 3448. https://doi.org/10.3390/electronics12163448
APA StyleLiang, S., Wang, B., Wang, X., & Yan, X. (2023). Preparation and Optical Property of Far-Red LED Encapsulated with the Graded-Index Fluorescent Glass Film. Electronics, 12(16), 3448. https://doi.org/10.3390/electronics12163448