7T Magnetic Compatible Multimodality Electrophysiological Signal Recording System
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Architecture
2.2. Hardware of EP Signal Acquisition System
2.3. Magnetic Compatibility Processing
2.3.1. MRI-Compatible Component Material Selection
2.3.2. Magnetic Shielding: EEG-fMRI Synchronous
2.3.3. High-Speed Serial Port—Fiber Optic Design
2.4. Software of the EP Signal Acquisition System
2.4.1. Data Preprocessing
2.4.2. Artifact Removal
3. Experimental Results
3.1. Multitype EP Signals Acquisition
3.1.1. Alpha Wave Recording of EEG
3.1.2. ECoG Recording Combined with Multimodal Stimulation
3.2. Acquisition Experiment in 7T MRI
3.2.1. Heart Rate Monitoring by ECG in 7T MRI
3.2.2. Comparison with TDT for Epilepsy Signal Acquisition in 7T MRI
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Logothetis, N.K. What we can do and what we cannot do with fMRI. Nature 2012, 453, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Schulz, K.; Sydekum, E.; Krueppel, R.; Engelbrecht, C.J.; Schlegel, F.; Schroter, A.; Rudin, M.; Helmchen, F. Simultaneous BOLD fMRI and fiber-optic calcium recording in rat neocortex. Nat. Methods 2012, 9, 597–607. [Google Scholar] [CrossRef] [PubMed]
- Kosten, L.; Emmi, S.A.; Missault, S.; Keliris, G.A. Combining magnetic resonance imaging with readout and/or pertur-bation of neural activity in animal models: Advantages and pitfalls. Front. Neurosci. 2022, 16, 938665. [Google Scholar] [CrossRef] [PubMed]
- Sclocco, R.; Garcia, R.G.; Kettner, N.W.; Isenburg, K.; Fisher, H.P.; Hubbard, C.S.; Ay, I.; Polimeni, J.R.; Goldstein, J.; Makris, N.; et al. The influence of respiration on brainstem and cardiovagal response to auricular vagus nerve stimulation: A multimodal ultrahigh-field (7T) fMRI study. Brain Stimul. 2019, 12, 911–921. [Google Scholar] [CrossRef]
- Ebrahimzadeh, E.; Shams, M.; Fayaz, F.; Rajabion, L.; Mirbagheri, M.; Nadjar Araabi, B.; Soltanian-Zadeh, H. Quantitative determination of concordance in localizing epileptic focus by component-based EEG-fMRI. Comput. Methods Programs Biomed. 2019, 177, 231–241. [Google Scholar] [CrossRef]
- Lioi, G.; Butet, S.; Fleury, M.; Bannier, E.; Lecuyer, A.; Bonan, I.; Barillot, C. A Multi-Target Motor Imagery Training Using Bimodal EEG-fMRI Neurofeedback: A Pilot Study in Chronic Stroke Patients. Front. Hum. Neurosci. 2020, 14, 37. [Google Scholar] [CrossRef]
- Cecchetti, G.; Agosta, F.; Canu, E.; Basaia, S.; Barbieri, A.; Cardamone, R.; Bernasconi, M.P.; Castelnovo, V.; Cividini, C.; Cursi, M.; et al. Cognitive, EEG, and MRI features of COVID-19 survivors: A 10-month study. J. Neurol. 2022, 269, 3400–3412. [Google Scholar] [CrossRef]
- Perlaki, G.; Orsi, G.; Schwarcz, A.; Bodi, P.; Plozer, E.; Biczo, K.; Aradi, M.; Doczi, T.; Komoly, S.; Hejjel, L.; et al. Pain-related autonomic response is modulated by the medial prefrontal cortex: An ECG-fMRI study in men. J. Neurol. Sci. 2015, 349, 202–208. [Google Scholar] [CrossRef]
- Schrooten, M.; Vandenberghe, R.; Peeters, R.; Dupont, P. Quantitative Analyses Help in Choosing Between Simultaneous vs. Separate EEG and fMRI. Front. Neurosci. 2019, 12, 11. [Google Scholar] [CrossRef]
- Angelone, L.M.; Vasios, C.E.; Wiggins, G.; Purdon, P.L.; Bonmassar, G. On the effect of resistive EEG electrodes and leads during 7 T MRI: Simulation and temperature measurement studies. Magn. Reson. Imaging 2006, 24, 801–812. [Google Scholar] [CrossRef]
- Jorge, J.; Grouiller, F.; Ipek, O.; Stoermer, R.; Michel, C.M.; Figueiredo, P.; van der Zwaag, W.; Gruetter, R. Simultaneous EEG-fMRI at ultra-high field: Artifact prevention and safety assessment. Neuroimage 2015, 105, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Mullinger, K.J.; Castellone, P.; Bowtell, R. Best current practice for obtaining high quality EEG data during simultane-ous FMRI. J. Vis. Exp. 2013, 1, 50283. [Google Scholar]
- Angelone, L.M.; Potthast, A.; Segonne, F.; Iwaki, S.; Belliveau, J.W.; Bonmassar, G. Metallic electrodes and leads in sim-ultaneous EEG-MRI: Specific absorption rate (SAR) simulation studies. Bioelectromagnetics 2004, 25, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Ritter, P.; Villringer, A. Simultaneous EEG-fMRI. Neurosci. Biobehav. Rev. 2006, 30, 823–838. [Google Scholar] [CrossRef]
- Huster, R.J.; Debener, S.; Eichele, T.; Herrmann, C.S. Methods for simultaneous EEG-fMRI: An introductory review. J. Neurosci. 2012, 32, 6053–6060. [Google Scholar] [CrossRef]
- Allen, P.J.; Josephs, O.; Turner, R. A method for removing imaging artifact from continuous EEG recorded during func-tional MRI. Neuroimage 2000, 12, 230–239. [Google Scholar] [CrossRef]
- Liu, Z.; de Zwart, J.A.; van Gelderen, P.; Kuo, L.W.; Duyn, J.H. Statistical feature extraction for artifact removal from concurrent fMRI-EEG recordings. Neuroimage 2012, 59, 2073–2087. [Google Scholar] [CrossRef]
- Xia, H.; Ruan, D.; Cohen, M.S. Removing ballistocardiogram (BCG) artifact from full-scalp EEG acquired inside the MR scanner with Orthogonal Matching Pursuit (OMP). Front. Neurosci. 2014, 8, 218. [Google Scholar] [CrossRef]
- Luo, Q.; Huang, X.; Glover, G.H. Ballistocardiogram artifact removal with a reference layer and standard EEG cap. J. Neurosci. Methods 2014, 233, 137–149. [Google Scholar] [CrossRef]
- Niazy, R.K.; Beckmann, C.F.; Iannetti, G.D.; Brady, J.M.; Smith, S.M. Removal of FMRI environment artifacts from EEG data using optimal basis sets. Neuroimage 2005, 28, 720–737. [Google Scholar] [CrossRef]
- Sing, S.P.; Mishr, S.; Gupt, S.; Padmanabha, P.; Ji, L.; Colin, T.K.A.; Tsai, Y.T.; Kejia, T.; Sankarapillai, P.; Mohan, A. Func-tional Mapping of the Brain for Brain–Computer Interfacing: A Review. Electronics 2023, 12, 604. [Google Scholar] [CrossRef]
- Amprimo, G.; Rechich, I.; Ferrari, C.; Olm, G. Measuring Brain Activation Patterns from Raw Single-Channel EEG during Exergaming: A Pilot Study. Electronics 2023, 12, 623. [Google Scholar] [CrossRef]
- Hwang, J.; Park, S.; Chi, J. Improving Multi-Class Motor Imagery EEG Classification Using Overlapping Sliding Window and Deep Learning Model. Electronics 2023, 12, 1186. [Google Scholar] [CrossRef]
- Kang, Q.; Li, F.; Gao, J. Exploring the Functional Brain Network of Deception in Source-Level EEG via Partial Mutual Infor-mation. Electronics 2023, 12, 1633. [Google Scholar] [CrossRef]
- Duffy, B.A.; Toga, A.W.; Kim, H. Gradient Artifact Correction for Simultaneous EEG-fMRI using Denoising Auto-encoders. IEEE Int. Symp. Biomed. Imaging 2020, 1, 1408–1411. [Google Scholar]
- Folgado, D.; Barandas, M.; Antunes, M.; Nunes, M.L.; Liu, H.; Hartmann, Y.; Schultz, T.; Gamboa, H. Tssearch: Time series subsequence search library. SoftwareX 2022, 18, 101049. [Google Scholar] [CrossRef]
- Rodrigues, J.; Liu, H.; Folgado, D.; Belo, D.; Schultz, T.; Gamboa, H. Feature-Based Information Retrieval of Multimodal Biosignals with a Self-Similarity Matrix: Focus on Automatic Segmentation. Biosensors 2022, 12, 1182. [Google Scholar] [CrossRef]
- Correa, A.G.; Laciar, E.; Patiño, H.D.; Valentinuzzi, M.E. Artifact removal from EEG signals using adaptive filters in cascade. J. Phys. Conf. Series 2007, 1, 90. [Google Scholar] [CrossRef]
- Grouiller, F.; Vercueil, L.; Krainik, A.; Segebarth, C.; Kahane, P.; David, O. A comparative study of different artefact re-moval algorithms for EEG signals acquired during functional MRI. Neuroimage 2007, 38, 124–137. [Google Scholar] [CrossRef]
- Schlag, M.G.; Hopf, R.; Redl, H. Serial recording of sensory, corticomotor, and brainstem-derived motor evoked poten-tials in the rat. Somatosens. Mot. Res. 2001, 18, 106–116. [Google Scholar]
- Yizhar, O.; Fenno, L.E.; Davidson, T.J.; Mogri, M.; Deisseroth, K. Optogenetics in neural systems. Neuron 2011, 71, 9–34. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhang, L.; Xia, J.; Zhao, W.; Dong, S.; Ye, Z.; Pan, G.; Luo, J.; Zhang, S. Multimodal Electrocorticogram Active Electrode Array Based on Zinc Oxide-Thin Film Transistors. Adv. Sci. 2023, 10, e2204467. [Google Scholar] [CrossRef] [PubMed]
Parameter | Brain Product BrainAmp MR | NeuroScan SynAmps | Delsys Trigno Tiber | TDT PZ5 | Our Work |
---|---|---|---|---|---|
EP signal compatible | EEG | EEG | EMG | EEG/EMG | EEG/sEMG/ECG |
Number of channels | 32 | Up to 256 | 64–128 | 64–128 | Up to 256 |
Sample rate | 5 k | Up to 20 k | 2 k | 750–50 k | UP to 16 k |
ADC bit | 16 | 24 | 16 | 16 | 24 |
CMRR | −90 dB | −110 dB | −80 dB | −104 dB | −110 dB |
Input noise | <1 μVpp | <0.5 μVpp | <1.5 μVrms | 3.0 μVrms 300–7 kHz | <1 μVrms |
Bandwidth | 0–250 Hz | 0–3.5 kHz | 10–450 Hz | 0.1–10 kHz | 0–6.8 kHz |
Input impedance | 10 MΩ | 10 GΩ | / | / | >500 MΩ |
Acquisition methods | Single-electrode | Single-/dual-electrodes | Single-electrode | Single-/dual-electrodes | Single-/dual-electrodes |
Filter | Butterworth | / | / | low-pass, notch, bandpass | 8-order low-pass, notch, bandpass |
Dynamic voltage circumference | ±16.384 mV | ±400 mV | ±11 mV | ±0.5 V | ±0.225 V |
Data transmission | optical fiber | Passive carbon fiber | USB/Wi-Fi | wired | Wi-Fi and optical fiber |
Access to the MRI | Only amplifier | / | / | Only amplifier | All part |
MRI intensity adaptation | 3T | 4T | / | 7T | 7T |
Collection during MRI scan | √ | √ | / | √ | √ |
GA removal algorithm | / | √ | / | / | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, J.; Xia, J.; Zhang, F.; Zhang, L.; Zhang, S.; Pan, G.; Dong, S. 7T Magnetic Compatible Multimodality Electrophysiological Signal Recording System. Electronics 2023, 12, 3648. https://doi.org/10.3390/electronics12173648
Pan J, Xia J, Zhang F, Zhang L, Zhang S, Pan G, Dong S. 7T Magnetic Compatible Multimodality Electrophysiological Signal Recording System. Electronics. 2023; 12(17):3648. https://doi.org/10.3390/electronics12173648
Chicago/Turabian StylePan, Jiadong, Jie Xia, Fan Zhang, Luxi Zhang, Shaomin Zhang, Gang Pan, and Shurong Dong. 2023. "7T Magnetic Compatible Multimodality Electrophysiological Signal Recording System" Electronics 12, no. 17: 3648. https://doi.org/10.3390/electronics12173648
APA StylePan, J., Xia, J., Zhang, F., Zhang, L., Zhang, S., Pan, G., & Dong, S. (2023). 7T Magnetic Compatible Multimodality Electrophysiological Signal Recording System. Electronics, 12(17), 3648. https://doi.org/10.3390/electronics12173648