A Multi-Strategy Crazy Sparrow Search Algorithm for the Global Optimization Problem
Abstract
:1. Introduction
1.1. Literature Review
1.1.1. Improving the Search Mechanism of the Algorithm
1.1.2. Integration of Other Algorithms
1.2. Research Gaps and Motivations
1.3. Contribution
- The introduction of the LTMSSA aims to address the issues inherent to the initial algorithm.
- The LTMSSA increases the population diversity by utilizing logistic-tent hybrid chaotic maps and improves the discoverer-follower scaling factor to make the algorithm more accurate at convergence.
- Improving the discoverer and follower positions with the crazy operator and the Lévy flight strategy, respectively, and introducing the tent hybrid and Corsi variational perturbation strategies to reconcile the capability for both local and global search of the SSA.
- The LTMSSA is evaluated for efficacy on 23 standard test functions and compared to different algorithms.
- The scalability of the LTMSSA in various dimensions is examined and implemented in practical engineering issues involving the design of welded beams and reducers. Results indicate that the enhanced LTMSSA strategy proposed applies to solving optimization-related issues.
2. Sparrow Search Algorithm
2.1. Sparrow Search Algorithm Model
2.2. Sparrow Search Algorithm Pseudo Code
Algorithm 1 The framework of the SSA. |
Input: T: the maximum iterations PD: the number of producers SD: the number of sparrows who perceive the danger R2: the alarm value ST: safety value n: the number of sparrows Initialize a population of n sparrows and define its relevant parameters. Output: Xbest, fbest. 1: While (t < T) 2: Rank the fitness values and find the current best individual and the current worst individual. 3: R2 = rand (1) 4: for i = 1: PD 5: Using Equation (3) update the sparrow’s location; 6: end for 7: for i = (PD + 1): n 8: Using Equation (4) update the sparrow’s location; 9: end for 10: for i = 1: SD 11: Using Equation (5) update the sparrow’s location; 12: end for 13: Obtain the current new location; 14: If the new location is better than before, update it; 15: t = t + 1 16: End While 17: return Xbest, fbest. |
3. Multi-Strategy Hybrid Crazy Sparrow Search Algorithm
3.1. Population Initialization
3.1.1. Logistic-Tent Hybrid Chaos Map
3.1.2. Initial Population Elitism
3.2. Location Formula Update
3.2.1. Proportionality Improvement
3.2.2. Join the Madness Calculator to Improve the Discoverer
3.2.3. Lévy Flight Strategy to Improve Followers
3.3. Tent Chaotic Perturbation and Corsi Variation Strategy
3.3.1. Tent Chaos Perturbation
3.3.2. Corsi Mutation
3.4. LTMSSA Flow Chart
3.5. Computational Complexity
4. Experimental Results and Discussion
4.1. Test Function and Algorithm Parameters
4.2. Scalability Testing
4.3. Population Diversity Analysis of the LTMSSA
4.4. Algorithm Comparison
4.4.1. Comparison of Single-Peak Test Functions
4.4.2. Comparison of Multi-Peak Test Functions
4.4.3. Comparison of Fixed-Dimensional Test Functions
4.4.4. Optimal Value of Each Algorithm
4.5. Discussion
5. Engineering Design Issues
5.1. Welded Beam Design
5.2. Reducer Design
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yapici, H.; Cetinkaya, N. A new meta-heuristic optimizer: Pathfinder algorithm. Appl. Soft Comput. 2019, 78, 545–568. [Google Scholar] [CrossRef]
- Yazdani, S.; Nezamabadi-Pour, H.; Kamyab, S. A gravitational search algorithm for multimodal optimization. Swarm Evol. Comput. 2014, 14, 69–85. [Google Scholar] [CrossRef]
- Tan, Y.; Zhu, Y. Fireworks algorithm for optimization. In Advances in Swarm Intelligence, Proceedings of the International Conference in Swarm Intelligence, Beijing, China, 12–15 June 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 355–364. [Google Scholar] [CrossRef]
- Karimi, H.; Kani, I.M. Finding the worst imperfection pattern in shallow lattice domes using genetic algorithms. J. Build. Eng. 2019, 23, 107–113. [Google Scholar] [CrossRef]
- Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation 2001, 76, 60–68. [Google Scholar] [CrossRef]
- Dhiman, G.; Kumar, V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowl.-Based Syst. 2019, 165, 169–196. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Beni, G.; Wang, J. Swarm intelligence in cellular robotic systems. In Robots and Biological Systems: Towards a New Bionics? NATO ASI Series; Springer: Berlin/Heidelberg, Germany, 1993; pp. 703–712. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R.C. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar] [CrossRef]
- Eberhart, R.C.; Shi, Y. Particle swarm optimization: Developments, applications and resources. In Proceedings of the IEEE Congress on Evolutionary Computation, Seoul, Republic of Korea, 27–30 May 2001; pp. 81–86. [Google Scholar] [CrossRef]
- Dorigo, M.; Maniezzo, V.; Colorni, A. The ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B 1996, 26, 29–41. [Google Scholar] [CrossRef]
- Xia, X.; Liu, J.; Hu, Z. An improved particle swarm optimizer based on tabu detecting and local learning strategy in a shrunk search space. Appl. Soft Comput. 2014, 23, 76–90. [Google Scholar] [CrossRef]
- Li, S.; Tan, M. A hybrid PSO-BFGS strategy for global optimization of multimodal functions. IEEE Trans. Syst. Man Cybern. B 2011, 41, 1003–1014. [Google Scholar]
- Zhao, S.; Liang, J.J.; Suganthan, P.N. Dynamic multi-swarm particle swarm optimizer with local search for large scale global optimization. In Proceedings of the Congress on Evolutionary Computation, Singapore, 1–6 June 2008; pp. 3845–3852. [Google Scholar] [CrossRef]
- Yang, X.S.; He, X. Bat algorithm: Literature review and applications. Int. J. Bio-Inspired Comput. 2013, 5, 141–149. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Passino, K.M. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. 2002, 22, 52–67. [Google Scholar] [CrossRef]
- Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report-TR06; Erciyes University, Engineering Faculty, Computer Engineering Department: Talas, Turkey, 2005; Volume 129, pp. 2865–2874. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Duan, H.; Qiao, P. Pigeon-inspired optimization: A new swarm intelligence optimizer for air robot path planning. Int. J. Intell. Comput. Cybern. 2014, 7, 24–37. [Google Scholar] [CrossRef]
- Yang, X.S. Nature-Inspired Metaheuristic Algorithms; Luniver Press: London, UK, 2008; pp. 1–147. [Google Scholar] [CrossRef]
- Yang, X.S. Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput. 2010, 2, 78–84. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Cuckoo search via L’evy flights. In Proceedings of the World Congress on Nature & Biologically Inspired Computing (NaBIC ’09), Coimbatore, India, 9–11 December 2009; pp. 210–214. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Engineering optimisation by cuckoo search. Int. J. Math. Model. Numer. Optim. 2010, 1, 330–343. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewi, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Pan, W.T. A new fruit fly optimization algorithm: Taking the financial distress model as an example. Knowl.-Based Syst. 2012, 26, 69–74. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Alavi, A.H. Krill herd: A new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 4831–4845. [Google Scholar] [CrossRef]
- Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 2016, 27, 1053–1073. [Google Scholar] [CrossRef]
- Zhao, R.Q.; Tang, W.S. Monkey Algorithm for global numerical optimization. J. Uncertain Syst. 2008, 2, 164–175. [Google Scholar] [CrossRef]
- Jiang, X.; Li, S. BAS: Beetle antennae search algorithm for optimization problems. Int. J. Robot. Control 2018, 1, 1–5. [Google Scholar] [CrossRef]
- Xue, J.K.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Liu, T.T.; Yuan, Z.; Wu, L.; Badami, B. An optimal brain tumor detection by convolutional neural network and enhanced sparrow search algorithm. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2021, 235, 459–469. [Google Scholar] [CrossRef]
- Liu, Q.L.; Zhang, Y.; Li, M.Q.; Zhang, Z.Y.; Chao, N.; Shang, J. Multi-UAV Path Planning Based on Fusion of Sparrow Search Algorithm and Improved Bioinspired Neural Network. IEEE Access 2021, 9, 124670–124681. [Google Scholar] [CrossRef]
- Liu, L.N.; Nan, X.Y.; Shi, Y.F. Improved sparrow search algorithm for solving job shop scheduling problem. Comput. Appl. Res. 2021, 38, 3634–3639. [Google Scholar] [CrossRef]
- Wei, P.F.; Fan, S.Z.; Shi, R.J.; Wang, W.Q.; Cheng, C.J. Short-term photovoltaic power prediction based on improved sparrow search algorithm with optimized support vector machine. Therm. Power Gener. 2021, 50, 74–79. [Google Scholar] [CrossRef]
- Tang, A.D.; Han, T.; Xu, D.W.; Xie, L. A chaotic sparrow search algorithm-based approach for UAV trajectory planning. Comput. Appl. 2021, 41, 2128–2136. [Google Scholar] [CrossRef]
- Tang, A.D.; Han, T.; Xu, D.W.; Xie, L. Chaotic sparrow search algorithm based on hierarchy and Brownian motion. J. Air Force Eng. Univ. (Nat. Sci. Ed.) 2021, 22, 96–103. [Google Scholar] [CrossRef]
- Zhang, S.D.; Zhang, J.Y.; Wang, Z.H.; Li, Q.H. Regression prediction of material grinding particle size based on improved sparrow search algorithm to optimize BP neural network. In Proceedings of the 2021 2nd International Symposium on Computer Engineering and Intelligent Communications, Nanjing, China, 6–8 August 2021; pp. 216–219. [Google Scholar] [CrossRef]
- Chen, X.X.; Huang, X.Y.; Zhu, D.L.; Qiu, Y.X. Research on chaotic flying sparrow search algorithm. J. Phys. Conf. Ser. 2021, 1848, 012044. [Google Scholar] [CrossRef]
- Ou-yang, C.T.; Zhu, D.L. Research on multi-strategy improved sparrow search algorithm incorporating K-means. Electro-Opt. Control 2021, 28, 11–16. [Google Scholar] [CrossRef]
- Ou-Yang, C.T.; Liu, Y.J.; Zhu, D.L. An adaptive chaotic sparrow search optimization algorithm. In Proceedings of the 2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering, Nanchang, China, 26–28 March 2021; pp. 76–82. [Google Scholar] [CrossRef]
- Mao, Q.H.; Zhang, Q. An improved sparrow algorithm incorporating Corsi variation and backward learning. Comput. Sci. Explor. 2021, 15, 1155–1164. [Google Scholar]
- Fu, H.; Liu, H. Improved sparrow search algorithm with multi-strategy fusion and its application. Control Decis. Mak. 2022, 37, 87–96. [Google Scholar] [CrossRef]
- Duan, Y.X.; Liu, C.Y. A sparrow search algorithm based on Sobol sequences and vertical and horizontal crossover strategies. Comput. Appl. 2022, 42, 36–43. [Google Scholar] [CrossRef]
- Chen, G.; Zeng, G.; Huang, B.; Liu, J. Sparrow search algorithm based on spiral exploration and adaptive hybrid mutation. J. Chin. Comput. Syst. 2023, 44, 779–786. [Google Scholar]
- Yan, S.Q.; Yang, P.; Zhu, D.L.; Wu, F.X.; Yan, Z. Improved sparrow search algorithm based on good point set. J. Beijing Univ. Aeronaut. Astronaut. 2022, 2021, 1–13. [Google Scholar] [CrossRef]
- He, G.S.; Dong, Z.; Sun, M. Parameter identification of superheated steam temperature model based on hybrid quantum sparrow algorithm. J. N. China Univ. Electr. Power (Nat. Sci. Ed.) 2023, 1, 92–100. [Google Scholar] [CrossRef]
- Wu, W.S.; Tian, L.Q.; Wang, Z.G.; Zhang, Y.; Wu, J.I.; Gui, F. A multi-objective sparrow optimization algorithm based on a novel non-dominated ranking. Comput. Appl. Res. 2022, 39, 2012–2019. [Google Scholar] [CrossRef]
- Liu, R.; Mo, W.B. Enhanced sparrow search algorithm and its engineering optimization application. Small Microcomput. Syst. 2022, 1–10. [Google Scholar] [CrossRef]
- Ma, W.; Zhu, X. A sparrow search algorithm based on Lévy flight perturbation strategy. J. Appl. Sci. 2022, 40, 116–130. [Google Scholar]
- Tian, L.; Liu, S. A hybrid sparrow and arithmetic optimization algorithm incorporating Hamiltonian graphs. Comput. Sci. So 2022, 2022, 1–13. [Google Scholar] [CrossRef]
- Yang, L.; Li, Z.; Wang, D.S.; Hong, M.; Wang, Z.B. Software defects prediction based on hybrid particle swarm optimization and sparrow search algorithm. IEEE Access 2021, 9, 60865–60879. [Google Scholar] [CrossRef]
- Li, F.; Lin, Y.X.; Zou, L.H.; Zhong, L.Y. Improved sparrow search algorithm applied to path planning of mobile robot. In Proceedings of the 2021 International Conference on Computer Information Science and Artificial Intelligence, Kunming, China, 17–19 September 2021; pp. 294–300. [Google Scholar]
- Liu, C.H.; He, Q. Improved search mechanism of simplex method to guide sparrow search algorithm. Comput. Eng. Sci. 2022, 2022, 9950161. [Google Scholar] [CrossRef]
- Zhou, Y.Q.; Zhang, H. New 3D affine transform applied to image encryption. Comput. Age 2022, 2022, 31–35. [Google Scholar] [CrossRef]
- Li, H.M.; Li, T.; Li, C.L. A new discrete memory-resistive chaotic system and its image encryption application. J. Hunan Inst. Technol. (Nat. Sci. Ed.) 2022, 35, 20–30. [Google Scholar] [CrossRef]
- Yang, K.X.; Wu, Z.H.; Hao, R.B. Four-dimensional chaotic systems and their applications in image encryption. Comput. Appl. Res. 2020, 37, 3433–3436. [Google Scholar] [CrossRef]
- Tang, C.H.; Wu, C.X. Logistic-Sine mapping and bit recombination for image encryption algorithms. Intell. Comput. Appl. 2022, 12, 173–179. [Google Scholar]
- Zhang, S.N.; Li, C.M. A color image encryption algorithm based on Logistic–Sine–Cosine mapping. Comput. Sci. 2022, 49, 353–358. [Google Scholar]
- Long, W.; Wu, T.B.; Tang, M.Z. Grey wolf optimizer algorithm based on lens imaging learning strategy. Acta Autom. Sin. 2020, 46, 2148–2164. [Google Scholar] [CrossRef]
- Wang, X.W.; Wang, W.; Wang, Y. An adaptive bat algorithm. In Intelligent Computing Theories and Technology—ICIC 2013; Springer: Berlin, Heidelberg, Germany, 2013; pp. 216–223. [Google Scholar] [CrossRef]
- Zhang, N.; Zhao, Z.D.; Bao, X.A. Gravitational search algorithm based on improved Tent chaos. Control Decis. 2020, 35, 893–900. [Google Scholar] [CrossRef]
- Guo, Z.Z.; Wang, P.; Ma, Y.F. Whale optimization algorithm based on adaptive weight and Cauchy mutation. Microelectron. Comput. 2017, 34, 20–25. [Google Scholar] [CrossRef]
- Li, A.L.; Quan, L.X.; Cui, G.M. A sparrow search algorithm incorporating positive cosine and Corsi variance. Comput. Eng. Appl. 2022, 58, 91–99. [Google Scholar] [CrossRef]
- Jiang, Y.; Ma, Y.; Liang, Y.Z. Optimized OTSU lung tissue segmentation algorithm based on fractional-order sparrow search. Comput. Sci. 2021, 48, 28–32. [Google Scholar] [CrossRef]
- Arora, S.; Singh, S. Butterfly optimization algorithm: A novel approach for global optimization. Soft Comput. 2019, 23, 715–734. [Google Scholar] [CrossRef]
- Carlos, A.; Coello, C. Use of a self-adaptive penalty approach for engineering optimization problems. Comput. Ind. 2000, 41, 113–127. [Google Scholar] [CrossRef]
- Sadollah, A.; Bahreininejad, A.; Eskandar, H.; Hamdi, M. Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. 2013, 13, 2592–2612. [Google Scholar] [CrossRef]
Algorithms | Parameters |
---|---|
SSA | ST = 0.8, PD = 0.2, SD = 0.2 |
SSSA | ST = 0.8, PD = 0.2, SD = 0.2 |
FSSA | ST = 0.8, PD = 0.2, SD = 0.2 |
CSFSSA | ST = 0.8, PD = 0.2, SD = 0.2 |
LTMSSA | ST = 0.8, PD = 0.2, SD = 0.2 |
GWO | a = (2→0), r1, r2 ∈ [0, 1] |
PSO | W = 0.9, C1 = 1.49445, C2 = 1.49445 |
BOA | a = (0.1→0.3) |
Type | Function | Dimension | Scope | Optimal Value |
---|---|---|---|---|
Unimodal functions | 30 | [−100, 100] | 0 | |
30 | [−10, 10] | 0 | ||
30 | [−100, 100] | 0 | ||
30 | [−100, 100] | 0 | ||
30 | [−30, 30] | 0 | ||
30 | [−100, 100] | 0 | ||
30 | [−1.28, 1.28] | 0 | ||
Multimodal functions | 30 | [−500, 500] | −418.9826 × D | |
30 | [−5.12, 5.12] | 0 | ||
30 | [−32, 32] | 0 | ||
30 | [−10, 10] | 0 | ||
30 | [−50, 50] | 0 | ||
30 | [−50, 50] | 0 | ||
Fixed dimensional functions | 2 | [−65.536, 65.536] | 0.998 | |
4 | [−5, 5] | 0.0003075 | ||
2 | [−5, 5] | −1.0316 | ||
2 | [−5, 5] | 0.398 | ||
2 | [−2, 2] | 3 | ||
3 | [0, 1] | −3.86 | ||
6 | [0, 1] | −3.32 | ||
4 | [0, 10] | −10.1532 | ||
4 | [0, 10] | −10.4028 | ||
4 | [0, 10] | −10.5363 |
F | Dim = 20 | Dim = 50 | Dim = 80 | ||||
---|---|---|---|---|---|---|---|
Avg | Std | Avg | Std | Avg | Std | ||
F1 | LTMSSA | 0 | 0 | 0 | 0 | 0 | 0 |
SSA | 4.58 × 10−29 | 2.51 × 10−28 | 1.47 × 10−36 | 6.76 × 10−36 | 9.75 × 10−33 | 5.34 × 10−32 | |
F2 | LTMSSA | 0 | 0 | 0 | 0 | 0 | 0 |
SSA | 1.00 × 10−30 | 4.03 × 10−30 | 3.11 × 10−32 | 1.62 × 10−31 | 2.49 × 10−33 | 1.36 × 10−32 | |
F3 | LTMSSA | 0 | 0 | 0 | 0 | 0 | 0 |
SSA | 3.21 × 10−14 | 1.19 × 10−13 | 1.85 × 10−13 | 9.13 × 10−13 | 2.19 × 10−15 | 6.46 × 10−15 | |
F4 | LTMSSA | 0 | 0 | 0 | 0 | 0 | 0 |
SSA | 2.62 × 10−9 | 1.27 × 10−8 | 3.48 × 10−9 | 1.31 × 10−8 | 1.37 × 10−9 | 3.70 × 10−9 | |
F5 | LTMSSA | 9.15 × 10−3 | 1.19 × 10−2 | 1.66 × 10−1 | 2.19 × 10−1 | 3.42 × 10−1 | 4.04 × 10−1 |
SSA | 8.51 × 10−4 | 2.50 × 10−3 | 3.11 × 10−3 | 7.30 × 10−3 | 5.83 × 10−3 | 1.04 × 10−2 | |
F6 | LTMSSA | 1.30 × 10−3 | 1.28 × 10−3 | 1.20 × 10−2 | 9.59 × 10−3 | 1.96 × 10−2 | 2.39 × 10−2 |
SSA | 6.29 × 10−6 | 1.23 × 10−5 | 2.17 × 10−5 | 4.13 × 10−5 | 5.46 × 10−5 | 1.08 × 10−4 | |
F7 | LTMSSA | 2.17 × 10−4 | 1.30 × 10−4 | 2.12 × 10−4 | 1.64 × 10−4 | 2.24 × 10−4 | 1.68 × 10−4 |
SSA | 2.61 × 10−4 | 1.85 × 10−4 | 4.06 × 10−4 | 3.36 × 10−4 | 2.66 × 10−4 | 2.58 × 10−4 | |
F8 | LTMSSA | −7.28 × 103 | 8.00 × 102 | −1.86 × 104 | 1.80 × 103 | −2.38 × 104 | 4.46 × 103 |
SSA | −6.60 × 103 | 1.56 × 103 | −1.65 × 104 | 4.60 × 103 | −2.98 × 104 | 4.84 × 103 | |
F9 | LTMSSA | 0 | 0 | 0 | 0 | 0 | 0 |
SSA | 0 | 0 | 0 | 0 | 0 | 0 | |
F10 | LTMSSA | 8.88 × 10−16 | 0 | 8.88 × 10−16 | 0 | 8.88 × 10−16 | 0 |
SSA | 3.73 × 10−15 | 6.42 × 10−15 | 1.72 × 10−15 | 2.02 × 10−15 | 1.95 × 10−15 | 1.90 × 10−15 | |
F11 | LTMSSA | 0 | 0 | 0 | 0 | 0 | 0 |
SSA | 0 | 0 | 0 | 0 | 0 | 0 | |
F12 | LTMSSA | 4.13 × 10−4 | 5.23 × 10−4 | 4.24 × 10−4 | 3.64 × 10−4 | 3.40 × 10−4 | 5.04 × 10−4 |
SSA | 5.82 × 10−7 | 1.69 × 10−6 | 6.73 × 10−7 | 1.04 × 10−6 | 3.54 × 10−7 | 5.52 × 10−7 | |
F13 | LTMSSA | 9.01 × 10−3 | 1.44 × 10−2 | 1.89 × 10−2 | 2.17 × 10−2 | 2.37 × 10−2 | 2.40 × 10−2 |
SSA | 1.38 × 10−5 | 3.64 × 10−5 | 1.15 × 10−5 | 2.04 × 10−5 | 1.76 × 10−5 | 3.29 × 10−5 |
F | LTMSSA | SSA | SSSA | FSSA | CSFSSA | GWO | PSO | BOA | |
---|---|---|---|---|---|---|---|---|---|
F1 | Avg | 0 | 2.53 × 10−32 | 1.08 × 10−30 | 1.37 × 10−32 | 2.43 × 10−30 | 1.32 × 10−27 | 1.18 × 10−5 | 7.77 × 10−11 |
Std | 0 | 1.38 × 10−31 | 5.91 × 10−30 | 5.31 × 10−32 | 1.33 × 10−29 | 1.95 × 10−27 | 2.98 × 10−5 | 8.62 × 10−12 | |
F2 | Avg | 0 | 5.19 × 10−31 | 2.67 × 10−37 | 1.18 × 10−34 | 3.39 × 10−37 | 8.15 × 10−17 | 1.68 × 10−1 | 2.25 × 10−8 |
Std | 0 | 2.84 × 10−30 | 1.46 × 10−36 | 4.37 × 10−34 | 1.86 × 10−36 | 6.37 × 10−17 | 5.36 × 10−1 | 8.11 × 10−9 | |
F3 | Avg | 0 | 4.74 × 10−13 | 2.98 × 10−8 | 1.18 × 10−14 | 1.48 × 10−7 | 6.66 × 10−6 | 7.36 × 10 | 6.33 × 10−11 |
Std | 0 | 2.56 × 10−12 | 8.45 × 10−8 | 5.97 × 10−14 | 6.79 × 10−7 | 1.77 × 10−5 | 4.88 × 10 | 7.40 × 10−12 | |
F4 | Avg | 0 | 6.07 × 10−9 | 1.78 × 10−7 | 6.74 × 10−9 | 3.38 × 10−6 | 8.38 × 10−7 | 1.52 | 3.58 × 10−8 |
Std | 0 | 2.40 × 10−8 | 9.37 × 10−7 | 1.51 × 10−8 | 1.04 × 10−5 | 1.02 × 10−6 | 7.02 × 10−1 | 4.18 × 10−9 | |
F5 | Avg | 6.43 × 10−2 | 1.15 × 10−3 | 4.70 × 10−1 | 1.62 × 10−3 | 1.51 | 2.70 × 10 | 5.89 × 10 | 2.89 × 10 |
Std | 9.91 × 10−2 | 2.72 × 10−3 | 1.04 | 2.77 × 10−3 | 3.63 | 8.32 × 10−1 | 3.47e+01 | 2.07 × 10−1 | |
F6 | Avg | 4.11 × 10−3 | 2.32 × 10−5 | 1.18 × 10−1 | 1.45 × 10−5 | 3.50 × 10−2 | 8.64 × 10−1 | 2.59 × 10−2 | 5.34 |
Std | 4.28 × 10−3 | 4.22 × 10−5 | 8.42 × 10−2 | 3.03 × 10−5 | 1.46 × 10−2 | 3.79 × 10−1 | 9.38 × 10−2 | 6.90 × 10−1 | |
F7 | Avg | 1.75 × 10−4 | 3.84 × 10−4 | 7.52 × 10−4 | 1.95 × 10−3 | 4.28 × 10−3 | 1.82 × 10−3 | 6.69 × 10−2 | 2.34 × 10−3 |
Std | 1.60 × 10−4 | 3.96 × 10−4 | 1.89 × 10−3 | 1.02 × 10−3 | 4.21 × 10−3 | 1.10 × 10−3 | 3.76 × 10−2 | 8.92 × 10−4 |
F | LTMSSA | SSA | SSSA | FSSA | CSFSSA | GWO | PSO | BOA | |
---|---|---|---|---|---|---|---|---|---|
F8 | Avg | −1.05 × 104 | −9.03 × 103 | −8.60 × 103 | −3.20 × 103 | −3.05 × 103 | −6.17 × 103 | −5.39 × 103 | −4.09 × 103 |
Std | 1.25 × 103 | 2.43 × 103 | 2.12 × 103 | 2.23 × 103 | 3.56 × 103 | 8.61 × 103 | 1.49 × 103 | 4.13 × 103 | |
F9 | Avg | 0 | 0 | 7.51 | 0 | 3.60 | 2.32 | 6.42 × 10 | 3.91 × 10 |
Std | 0 | 0 | 3.84 × 10 | 0 | 1.77 × 10 | 2.97 | 1.46 × 10 | 7.99 × 10 | |
F10 | Avg | 8.88 × 10−16 | 1.72 × 10−15 | 3.26 × 10−15 | 1.84 × 10−15 | 4.57 × 10−14 | 1.01 × 10−13 | 1.85 | 2.81 × 10−8 |
Std | 0 | 1.53 × 10−15 | 1.23 × 10−14 | 1.60 × 10−15 | 2.45 × 10−13 | 1.51 × 10−14 | 8.85 × 10−1 | 5.16 × 10−9 | |
F11 | Avg | 0 | 0 | 3.56 × 10−3 | 0 | 0 | 3.13 × 10−3 | 5.64 × 10−2 | 1.21 × 10−11 |
Std | 0 | 0 | 1.95 × 10−2 | 0 | 0 | 7.76 × 10−3 | 8.70 × 10−2 | 1.33 × 10−11 | |
F12 | Avg | 7.07 × 10−4 | 9.13 × 10−7 | 7.79 × 10−3 | 4.10 × 10−7 | 7.29 × 10−4 | 4.32 × 10−2 | 4.17 × 10−1 | 5.25 × 10−1 |
Std | 6.17 × 10−4 | 1.62 × 10−6 | 7.81 × 10−3 | 4.59 × 10−7 | 7.18 × 10−4 | 3.90 × 10−2 | 7.49 × 10−1 | 1.54 × 10−1 | |
F13 | Avg | 1.33 × 10−2 | 2.07 × 10−5 | 1.06 × 10−1 | 1.20 × 10−5 | 3.58 × 10−2 | 5.69 × 10−1 | 2.05 × 10−1 | 2.81 |
Std | 1.14 × 10−2 | 6.86 × 10−5 | 1.28 × 10−1 | 3.27 × 10−5 | 4.32 × 10−2 | 2.25 × 10−1 | 7.13 × 10−1 | 3.08 × 10−1 |
F | LTMSSA | SSA | SSSA | FSSA | CSFSSA | GWO | PSO | BOA | |
---|---|---|---|---|---|---|---|---|---|
F14 | Avg | 2.64 | 4.34 | 4.84 | 2.80 | 5.30 | 5.46 | 2.77 | 1.10 |
Std | 3.07 | 4.46 | 3.61 | 3.23 | 4.51 | 4.61 | 2.23 | 2.59 × 10−1 | |
F15 | Avg | 3.40 × 10−4 | 3.98 × 10−4 | 8.24 × 10−3 | 3.54 × 10−4 | 4.20 × 10−4 | 4.46 × 10−3 | 5.80 × 10−4 | 3.90 × 10−4 |
Std | 4.75 × 10−5 | 2.44 × 10−4 | 2.00 × 10−2 | 1.05 × 10−4 | 1.41 × 10−4 | 8.09e × 10−3 | 2.52 × 10−4 | 6.34e × 10−5 | |
F16 | Avg | −1.03 | −1.03 | −8.68 × 10−1 | −1.03 | −4.89 × 10−1 | −1.03 | −1.03 | −1.31 × 104 |
Std | 1.053 × 10−9 | 7.65 × 10−16 | 3.32 × 10−1 | 5.44 × 10−16 | 3.91 × 10−1 | 2.56 × 10−8 | 6.39 × 10−16 | 1.22 × 104 | |
F17 | Avg | 3.98 × 10−1 | 3.98 × 10−1 | 4.04 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 | 3.98 × 10−1 | 3.99 × 10−1 |
Std | 1.48 × 10−6 | 5.78 × 10−7 | 3.01 × 10−2 | 2.84 × 10−6 | 1.40 × 10−6 | 1.74 × 10−6 | 0 | 6.83 × 10−4 | |
F18 | Avg | 3.00 | 1.29 × 10 | 1.34 × 10 | 3.00 | 2.91 × 10 | 3.90 | 3.00 | 3.08 |
Std | 9.50 × 10−13 | 1.32 × 10 | 1.85 × 10 | 1.71 × 10−3 | 1.32 × 10 | 4.93 | 1.08 × 10−12 | 2.47 × 10−1 | |
F19 | Avg | −3.86 | −3.81 | −3.82 | −3.86 | −3.86 | −3.86 | −3.84 | −1.87 × 1018 |
Std | 1.93 × 10−3 | 1.96 × 10−1 | 6.66 × 10−2 | 2.07 × 10−3 | 2.54 × 10−3 | 2.71 × 10−3 | 1.41 × 10−1 | 1.38 × 1019 | |
F20 | Avg | −3.28 | −3.27 | −3.11 | −3.28 | −3.28 | −3.23 | −3.27 | −3.01 |
Std | 2.41 × 10−2 | 7.17 × 10−2 | 1.93 × 10−1 | 5.96 × 10−2 | 5.39 × 10−2 | 9.67 × 10−2 | 5.99 × 10−2 | 1.14 × 10−1 | |
F21 | Avg | −1.01 × 10 | −7.43 | −6.34 | −1.01 × 10 | −9.81 | −9.28 | −6.36 | −4.83 |
Std | 7.13 × 10−2 | 2.59 | 3.13 | 7.04 × 10−1 | 1.44 | 1.99 | 3.60 | 4.80 × 10−1 | |
F22 | Avg | −1.04 × 10 | −7.75 | −6.06 | −1.04 × 10 | −1.00 × 10 | −1.04 × 10 | −6.70 | −4.47 |
Std | 2.80 × 10−2 | 2.70 | 3.21 | 1.67 × 10−1 | 1.55 | 9.70 × 10−1 | 3.60 | 3.81 × 10−1 | |
F23 | Avg | −1.05 × 10 | −7.11 | −5.52 | −1.05 | −9.76 | −9.99 | −5.98 | −4.57 |
Std | 2.62 × 10−2 | 2.65 | 3.12 | 8.21 × 10−2 | 2.05 | 2.06 | 3.85 | 8.70 × 10−1 |
Algorithms | Optimal Values for Variables | Optimum Value | |||
---|---|---|---|---|---|
h | l | t | b | ||
LTMSSA | 0.3345 | 2.0109 | 8.2792 | 0.2451 | 1.8117 |
SSA | 0.2890 | 2.5890 | 7.4037 | 0.3065 | 2.0499 |
SSSA | 0.2798 | 4.5590 | 9.3352 | 0.2043 | 2.0970 |
FSSA | 0.3888 | 1.7238 | 8.1146 | 0.2551 | 1.8541 |
CSFSSA | 0.4953 | 2.1360 | 5.5490 | 0.5495 | 2.9458 |
GWO | 0.3007 | 2.1222 | 9.0381 | 0.2058 | 1.9549 |
PSO | 0.1000 | 7.0875 | 9.0366 | 0.2057 | 1.9769 |
BOA | 0.3322 | 3.2012 | 6.6256 | 0.3865 | 2.5096 |
Algorithms | Optimal Values for Variables | Optimum | ||||||
---|---|---|---|---|---|---|---|---|
Value | ||||||||
LTMSSA | 3.6538 | 0.7000 | 15.0919 | 6.8289 | 8.1556 | 3.3513 | 5.2872 | 2733.9 |
SSA | 3.2104 | 0.7375 | 15.4116 | 7.2710 | 7.4555 | 3.3662 | 5.2867 | 2981.9 |
SSSA | 3.5327 | 0.7000 | 15.1698 | 8.2012 | 7.9430 | 3.0855 | 5.4437 | 3106.5 |
FSSA | 3.3172 | 0.7079 | 15.7402 | 7.5154 | 7.5370 | 3.3576 | 5.2868 | 2897.4 |
CSFSSA | 3.6443 | 0.7000 | 16.7168 | 8.5967 | 7.9260 | 3.3535 | 5.2868 | 3017.5 |
GWO | 3.4837 | 0.7000 | 17.000 | 7.5806 | 7.6425 | 3.3577 | 5.2877 | 3002.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Wang, W.; Guo, Y.; Liao, S. A Multi-Strategy Crazy Sparrow Search Algorithm for the Global Optimization Problem. Electronics 2023, 12, 3967. https://doi.org/10.3390/electronics12183967
Jiang X, Wang W, Guo Y, Liao S. A Multi-Strategy Crazy Sparrow Search Algorithm for the Global Optimization Problem. Electronics. 2023; 12(18):3967. https://doi.org/10.3390/electronics12183967
Chicago/Turabian StyleJiang, Xuewei, Wei Wang, Yuanyuan Guo, and Senlin Liao. 2023. "A Multi-Strategy Crazy Sparrow Search Algorithm for the Global Optimization Problem" Electronics 12, no. 18: 3967. https://doi.org/10.3390/electronics12183967
APA StyleJiang, X., Wang, W., Guo, Y., & Liao, S. (2023). A Multi-Strategy Crazy Sparrow Search Algorithm for the Global Optimization Problem. Electronics, 12(18), 3967. https://doi.org/10.3390/electronics12183967