PAPR Suppression for Angular-Domain-Based Massive Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing System
Abstract
:1. Introduction
2. System Model
3. PAPR Reduction in the Angular Domain
3.1. EM-TGM-GAMP
Algorithm 1: EM-TGM-GAMP-ADMA |
Input: , , , |
Initialize: , |
While do |
1. Estimate the posterior distributions and using GAMP algorithm; |
2. Make a posterior estimation of to obtain based on the likelihood approximation |
; |
3. Compute the estimator of noise variance using EM procedure, and update the value of |
to minimize ; |
Output: . |
3.2. Optimized ADMM
Algorithm 2: Optimized ADMM-ADMA |
Input: , , , , |
Initialize: , , , |
While do |
1. ; |
2. If |
; |
else |
; |
3. ; |
4. ; |
Output: . |
3.3. Computational Complexity Analysis
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pereira de Figueiredo, F.A. An overview of massive MIMO for 5G and 6G. IEEE Lat. Am. Trans. 2022, 20, 931–940. [Google Scholar] [CrossRef]
- Jiang, H.; Xiong, B.; Zhang, H.; Basar, E. Hybrid far- and near-field modeling for reconfigurable intelligent surface assisted V2V channels: A sub-array partition based approach. IEEE Trans. Wirel. Commun. 2023. [Google Scholar] [CrossRef]
- Basar, E. Reconfigurable intelligent surface-based index modulation: A new beyond MIMO paradigm for 6G. IEEE Trans. Commun. 2020, 68, 3187–3196. [Google Scholar] [CrossRef]
- Jeon, J.; Lee, G.; Ibrahim, A.A.I.; Yuan, J.; Xu, G.; Cho, J.; Onggosanusi, E.; Kim, Y.; Lee, J.; Zhang, J.C. MIMO evolution toward 6G: Modular massive MIMO in low-frequency bands. IEEE Commun. Mag. 2021, 59, 52–58. [Google Scholar] [CrossRef]
- Shlezing, N.; Alexandropoulos, G.C.; Imani, M.F.; Eldar, Y.C.; Smith, D.R. Dynamic metasurface antennas for 6G extreme massive MIMO communications. IEEE Wirel. Commun. 2021, 28, 106–113. [Google Scholar] [CrossRef]
- He, H.; Yu, X.; Zhang, J.; Song, S.; Letaief, K.B. Cell-free massive MIMO for 6G wireless communication networks. J. Commun. Inf. Net. 2021, 6, 321–335. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, J.; Jin, Y.; Ai, B. Wireless powered IoE for 6G: Massive access meets scalable cell-free massive MIMO. China Commun. 2020, 17, 92–109. [Google Scholar] [CrossRef]
- Bai, L.; Huang, Z.; Zhang, X.; Cheng, X. A non-stationary 3D model for 6G massive MIMO mmWave UAV channels. IEEE Trans. Wirel. Commun. 2022, 21, 4325–4339. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, Z.; Zheng, D.; Chen, S.; Gunduz, D.; Poor, H.V. Transformer-empowered 6G intelligent networks: From massive MIMO processing to semantic communication. IEEE Wirel. Commun. 2022. [Google Scholar] [CrossRef]
- Cui, M.; Wu, Z.; Lu, Y.; Wei, X.; Dai, L. Near-field MIMO communications for 6G: Fundamentals, challenges, potentials, and future directions. IEEE Commun. Mag. 2023, 61, 40–46. [Google Scholar] [CrossRef]
- Guan, K.; Yi, H.; He, D.; Ai, B.; Zhong, Z. Towards 6G: Paradigm of Realistic Terahertz Channel Modeling. China Commun. 2021, 18, 1–18. [Google Scholar] [CrossRef]
- Guan, K.; Ai, B.; Peng, B.; He, D.; Li, G.; Yang, J.; Zhong, Z.; Kuerner, T. Towards realistic high-speed train channels at 5G millimeter-wave band—Part I: Paradigm, Significance Analysis, and Scenario Reconstruction. IEEE Trans. Veh. Technol. 2018, 67, 9112–9128. [Google Scholar] [CrossRef]
- Papazafeiropoulos, A. Joint spatial division and multiplexing for FDD in intelligent reflecting surface-assisted Massive MIMO systems. IEEE Trans. Veh. Technol. 2022, 71, 10754–10769. [Google Scholar] [CrossRef]
- Jiang, H.; Xiong, B.; Zhang, H.; Basar, E. Physics-based 3D end-to-end modeling for double-RISs assisted non-stationary UAV-to-ground communication channels. IEEE Trans. Commun. 2023, 71, 4247–4261. [Google Scholar] [CrossRef]
- Jia, R.; Chen, X.; Qi, Q.; Lin, H. Massive beam-division multiple access for B5G cellular internet of things. IEEE Internet Things J. 2020, 7, 2386–2396. [Google Scholar] [CrossRef]
- Yuan, H.; Wang, X.; Yang, K.; An, J. Hybrid precoding for cluster-based multi-carrier beam division multiple access in terahertz wireless communications. China Commun. 2021, 18, 81–92. [Google Scholar] [CrossRef]
- Li, Y.; Mohsan, S.A.H.; Chen, X.; Tehseen, R.; Li, S.; Wang, J. Research on power allocation in multiple-beam space division access based on NOMA for underwater optical communication. Sensors 2023, 23, 1746. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z. Potentials and limits of using preconfigured spatial beams as bandwidth resources: Beam selection versus beam aggregation. IEEE Wirel. Commun. Lett. 2022, 11, 2575–2579. [Google Scholar] [CrossRef]
- Li, R.; Yan, H.; Cabric, D. Rainbow-link: Beam-alignment-free and grant-free mmW multiple access using true-time-delay array. IEEE J. Select. Areas Commun. 2022, 40, 1692–1705. [Google Scholar] [CrossRef]
- Zhu, L.; Xiao, Z.; Xia, X.G.; Wu, D.O. Millimeter-wave communications with non-orthogonal multiple access for B5G/6G. IEEE Access 2019, 7, 116123–116132. [Google Scholar] [CrossRef]
- Mu, X.; Liu, Y.; Guo, L.; Lin, J.; Schober, R. Joint deployment and multiple access design for intelligent reflecting surface assisted networks. IEEE Trans. Wirel. Commun. 2021, 20, 6648–6664. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, X.; Zhou, S.; Yang, W.; Polyanskiy, Y.; Caire, G. Massive access for future wireless communication systems. IEEE Wirel. Commun. 2020, 27, 148–156. [Google Scholar] [CrossRef]
- Lin, H.; Gao, F.; Jin, S.; Li, G.Y. A new view of multi-user hybrid massive MIMO: Non-orthogonal angle division multiple access. IEEE J. Select. Areas Commun. 2017, 35, 2268–2280. [Google Scholar] [CrossRef]
- Liu, X.; Sha, J.; Xie, H.; Gao, F.; Jin, S.; Zhang, Z.; You, X.; Zhang, C. Efficient channel estimator with angle-division multiple access. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 708–718. [Google Scholar] [CrossRef]
- Wang, B.; Si, Q.; Jin, M. A novel tone reservation scheme based on deep learning for PAPR reduction in OFDM systems. IEEE Commun. Lett. 2020, 24, 1271–1274. [Google Scholar] [CrossRef]
- Wang, J.; Lv, X.; Wu, W. SCR-based tone reservation schemes with fast convergence for PAPR reduction in OFDM system. IEEE Wirel. Commun. Lett. 2019, 8, 624–627. [Google Scholar] [CrossRef]
- DelMarco, S.P. A constrained optimization approach to compander design for OFDM PAPR reduction. IEEE Trans. Broadcast. 2017, 64, 307–318. [Google Scholar] [CrossRef]
- Rateb, A.M.; Labana, M. An optimal low complexity PAPR reduction technique for next generation OFDM systems. IEEE Access 2019, 7, 16406–16420. [Google Scholar] [CrossRef]
- Huang, Y.; Hu, S.; Ma, S.; Liu, Z.; Xiao, M. Designing low-PAPR waveform for OFDM-based radcom systems. IEEE Trans. Wirel. Commun. 2022, 21, 6979–6993. [Google Scholar] [CrossRef]
- Aghdam, M.H.; Sharifi, A.A. PAPR reduction in OFDM systems: An efficient PTS approach based on particle swarm optimization. ICT Express 2019, 5, 178–181. [Google Scholar] [CrossRef]
- Padarti, V.K.; Rao, N.V. Adaptive SOICAF algorithm for PAPR mitigation in OFDM systems. Wirel. Pers. Commun. 2020, 113, 927–943. [Google Scholar] [CrossRef]
- Sarowa, S.; Kumar, N.; Agrawal, S.; Sohi, B.S. Evolution of PAPR reduction techniques: A wavelet based OFDM approach. Wirel. Pers. Commun. 2020, 115, 1565–1588. [Google Scholar] [CrossRef]
- Liang, R.; Li, H.; Zhang, W.; Liu, C.; Guo, Y. An efficient nonlinear quantized constant envelope precoding for Massive MU-MIMO systems. IEEE Syst. J. 2022. [Google Scholar] [CrossRef]
- Tan, J.; Xiao, Y.; Dan, L.; Xiang, W. Efficient LLR approximation for coded constant envelop OFDM. IEEE Trans. Veh. Technol. 2023, 72, 6194–6208. [Google Scholar] [CrossRef]
- Bereyhi, A.; Sedaghat, M.A.; Muller, R.R. Precoding via Approximate Message Passing with Instantaneous Signal Constraints. Available online: https://arxiv.org/abs/1801.02442 (accessed on 8 January 2018).
- Mezghani, A.; Heath, R.W. Massive MIMO precoding and spectral shaping with low resolution phase-only DACs and active constellation extension. IEEE Trans. Wirel. Commun. 2022, 21, 5265–5278. [Google Scholar] [CrossRef]
- Bao, H.; Fang, J.; Chen, Z.; Li, H.; Li, S. An efficient bayesian PAPR reduction method for OFDM-based massive MIMO systems. IEEE Trans. Wirel. Commun. 2016, 15, 4183–4195. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Wang, X.; Xin, Y.; Yang, X. PAPR Suppression for Angular-Domain-Based Massive Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing System. Electronics 2023, 12, 4015. https://doi.org/10.3390/electronics12194015
Liu T, Wang X, Xin Y, Yang X. PAPR Suppression for Angular-Domain-Based Massive Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing System. Electronics. 2023; 12(19):4015. https://doi.org/10.3390/electronics12194015
Chicago/Turabian StyleLiu, Ting, Xiaoming Wang, Yuanxue Xin, and Xi Yang. 2023. "PAPR Suppression for Angular-Domain-Based Massive Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing System" Electronics 12, no. 19: 4015. https://doi.org/10.3390/electronics12194015
APA StyleLiu, T., Wang, X., Xin, Y., & Yang, X. (2023). PAPR Suppression for Angular-Domain-Based Massive Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing System. Electronics, 12(19), 4015. https://doi.org/10.3390/electronics12194015