Semi-Supervised Remote Sensing Image Semantic Segmentation Method Based on Deep Learning
Abstract
:1. Introduction
2. Related Work
2.1. Semantic Segmentation Methods for Remote Sensing Images
2.2. Semi-Supervised Learning
3. Methods
3.1. Forest Vegetation Extraction Method Based on Semi-Supervised Learning
Algorithm 1 A high-confidence pseudo-label generation algorithm |
Input: Threshold accuracy, integrated model, pseudo-labeled samples , False label sample , of which represents the pseudo-labeled data set generated by the UNet network model, represents the pseudo-labeled data set generated by the DeepLabv3 network model, P represents the number of pixels contained in each sample. Output: Pseudo-label sample set with high confidence W
|
3.2. Model Pre-Training
4. Experiment
4.1. The Dataset
4.1.1. Accuracy
4.1.2. Recall
4.1.3. Precision
4.1.4. Balanced F1 Score
4.1.5. MIoU
4.1.6. Params
4.1.7. FLOPs
4.2. Remote Sensing Image Data Enhancement
4.2.1. Numerical Normalization
4.2.2. Data Enhancement
4.2.3. Random Order of the Training Set Data
4.3. Experimental Environment and Parameters
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shanmugapriya, P.; Rathika, S.; Ramesh, T.; Janaki, P. Applications of remote sensing in agriculture—A Review. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2270–2283. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, C.; Wang, Y.; Si, F.; Zhou, H.; Zhao, M.; Su, W.; Zhang, W.; Chan, K.L.; Liu, X. Preflight Evaluation of the Performance of the Chinese Environmental Trace Gas Monitoring Instrument (EMI) by Spectral Analyses of Nitrogen Dioxide. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3323–3332. [Google Scholar] [CrossRef]
- Rogge, D.; Rivard, B.; Segl, K.; Grant, B.; Feng, J. Mapping of NiCu–PGE ore hosting ultramafic rocks using airborne and simulated EnMAP hyperspectral imagery, Nunavik, Canada. Remote Sens. Environ. 2014, 152, 302–317. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhan, Q. A review of remote sensing applications in urban planning and management in China. In Proceedings of the 2009 Joint Urban Remote Sensing Event, Shanghai, China, 20–22 May 2009; pp. 1–5. [Google Scholar]
- Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martinez, V.; Rodríguez, J.G. A Review on Deep Learning Techniques Applied to Semantic Segmentation. arXiv 2017, arXiv:1704.06857. Available online: https://arxiv.org/abs/1704.06857 (accessed on 10 November 2022).
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Philipp, G.; Carbonell, J.G. The Nonlinearity Coefficient—Predicting Overfitting in Deep Neural Networks. arXiv 2018, arXiv:1806.00179. [Google Scholar]
- Bruzzone, L.; Chi, M.; Marconcini, M. A novel transductive SVM for semisupervised classification of remote-sensing images. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3363–3373. [Google Scholar] [CrossRef] [Green Version]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support vector machine versus random forest for remote sensing image classification: A meta-analysis and systematic review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Vapnik, V. The support vector method of function estimation. In Nonlinear Modeling; Springer: Berlin/Heidelberg, Germany, 1998; pp. 55–85. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Hong, D.; Yokoya, N.; Ge, N.; Chanussot, J.; Zhu, X.X. Learnable manifold alignment (LeMA): A semi-supervised cross-modality learning framework for land cover and land use classification. ISPRS J. Photogramm. Remote Sens. 2019, 147, 193–205. [Google Scholar] [CrossRef]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten zip code recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Zhong, L.; Hu, L.; Zhou, H. Deep learning based multi-temporal crop classification. Remote Sens. Environ. 2019, 221, 430–443. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the CVPR, Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. arXiv 2017, arXiv:1612.01105. [Google Scholar]
- Lin, G.; Milan, A.; Shen, C.; Reid, I. RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation. arXiv 2016, arXiv:1611.06612. [Google Scholar]
- Zhou, Z.; Rahman Siddiquee, M.M.; Tajbakhsh, N.; Liang, J. Unet++: A nested u-net architecture for medical image segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3–11. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic image segmentation with deep convolutional nets and fully connected crfs. arXiv 2014, arXiv:1412.7062. [Google Scholar]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation. arXiv 2018, arXiv:1802.02611. [Google Scholar]
- Liu, C.; Chen, L.C.; Schroff, F.; Adam, H.; Hua, W.; Yuille, A.; Fei-Fei, L. Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation. arXiv 2019, arXiv:1901.02985. [Google Scholar]
- Zhu, X.; Goldberg, A.B. Introduction to semi-supervised learning. Synth. Lect. Artif. Intell. Mach. Learn. 2009, 3, 1–130. [Google Scholar]
- French, G.; Laine, S.; Aila, T.; Mackiewicz, M.; Finlayson, G. Semi-supervised semantic segmentation needs strong, varied perturbations. arXiv 2019, arXiv:1906.01916. [Google Scholar]
- Zou, Y.; Zhang, Z.; Zhang, H.; Li, C.L.; Bian, X.; Huang, J.B.; Pfister, T. Pseudoseg: Designing pseudo labels for semantic segmentation. arXiv 2020, arXiv:2010.09713. [Google Scholar]
- Chen, X.; Yuan, Y.; Zeng, G.; Wang, J. Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision. arXiv 2021, arXiv:2106.01226. [Google Scholar]
- Tan, K.; Wang, X.; Du, P. Research progress of the remote sensing classification combining deep learning and semi-supervised learning. J. Image Graph. 2019, 24, 1823–1841. [Google Scholar]
- Shi, Q.; Liu, X.; Li, X. Road detection from remote sensing images by generative adversarial networks. IEEE Access 2017, 6, 25486–25494. [Google Scholar] [CrossRef]
- Rongshuang, F.; Yang, C.; Qiheng, X.; Jingxue, W. A high-resolution remote sensing image building extraction method based on deep learning. Acta Geod. Cartogr. Sin. 2019, 48, 34. [Google Scholar]
True Value | |||
---|---|---|---|
Positive | Negative | ||
Estimatevalue | Positive | True Positive (TP) | False Positive(FP) |
Negative | False Negative(FN) | True Negative (TN) |
Number of Labeled Data | Network Model | Grass (%) | Forest (%) | F1 score (%) | Accuracy (%) | MIoU (%) | Precision (%) | Recall (%) |
---|---|---|---|---|---|---|---|---|
20 | 72.12 | 36.58 | 68.43 | 68.40 | 55.87 | 69.37 | 86.40 | |
80.56 | 62.46 | 78.97 | 79.10 | 67.00 | 79.30 | 78.97 | ||
82.14 | 61.33 | 79.45 | 79.81 | 68.24 | 80.21 | 79.46 | ||
40 | 55.82 | 67.99 | 72.81 | 72.62 | 59.64 | 75.56 | 72.81 | |
81.98 | 62.06 | 79.53 | 79.81 | 68.19 | 80.11 | 79.53 | ||
82.85 | 64.26 | 80.53 | 80.67 | 69.27 | 80.81 | 80.53 | ||
60 | 63.71 | 62.44 | 73.94 | 74.38 | 61.82 | 76.25 | 73.94 | |
83.35 | 65.19 | 81.42 | 82.15 | 71.25 | 82.95 | 81.43 | ||
84.29 | 67.16 | 82.58 | 83.46 | 72.96 | 84.42 | 82.59 | ||
1367 | Ours | 86.89 | 70.70 | 84.24 | 84.39 | 73.99 | 84.64 | 84.24 |
Network Framework | Params (M) | Flops (G) | MemoryUsage (%) | MIoU (60 Labeled Data) |
---|---|---|---|---|
UNet | 51.38 | 130.70 | 8083/32510 = 24.8% | 73.94 |
DeeplabV3 | 46.72 | 199.76 | 8396/32510 = 25.8% | 81.43 |
Ours | 72.41 | 265.11 | 8860/32510 = 27.2% | 82.59 |
Method | Algorithm Execution Time (Minutes) | |||
---|---|---|---|---|
Numbers labeled data (percentage) | 20 (8.7%) | 40 (13.1%) | 60 (17.4%) | 367 (78%) |
UNet | 8.30 | 9.37 | 12.33 | - |
DeeplabV3 | 10.20 | 11.40 | 12.53 | - |
Ours | 25.28 | 25.36 | 27.01 | 30.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Zhang, W.; Zhang, X.; Emam, M.; Jing, W. Semi-Supervised Remote Sensing Image Semantic Segmentation Method Based on Deep Learning. Electronics 2023, 12, 348. https://doi.org/10.3390/electronics12020348
Li L, Zhang W, Zhang X, Emam M, Jing W. Semi-Supervised Remote Sensing Image Semantic Segmentation Method Based on Deep Learning. Electronics. 2023; 12(2):348. https://doi.org/10.3390/electronics12020348
Chicago/Turabian StyleLi, Linhui, Wenjun Zhang, Xiaoyan Zhang, Mahmoud Emam, and Weipeng Jing. 2023. "Semi-Supervised Remote Sensing Image Semantic Segmentation Method Based on Deep Learning" Electronics 12, no. 2: 348. https://doi.org/10.3390/electronics12020348
APA StyleLi, L., Zhang, W., Zhang, X., Emam, M., & Jing, W. (2023). Semi-Supervised Remote Sensing Image Semantic Segmentation Method Based on Deep Learning. Electronics, 12(2), 348. https://doi.org/10.3390/electronics12020348