Telerehabilitation with Computer Vision-Assisted Markerless Measures: A Pilot Study with Rett Syndrome Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. The Telerehabilitation System Architecture
2.3.1. Skeleton Model
2.3.2. Data
2.3.3. Therapist’s Interface
2.4. Procedure
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amir, R.E.; Van den Veyver, I.B.; Wan, M.; Tran, C.Q.; Francke, U.; Zoghbi, H.Y. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 1999, 23, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Amir, R.E.; Van Den Veyver, I.B.; Schultz, R.; Malicki, D.M.; Tran, C.Q.; Dahle, E.J.; Philippi, A.; Timar, L.; Percy, A.K.; Mo-til, K.J.; et al. Influence of Mutation Type and X Chromosome Inactivation on Rett Syndrome Phenotypes. Ann. Neurol. 2000, 47, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Fombonne, E.; Simmons, H.; Ford, T.; Meltzer, H.; Goodman, R. Prevalence of pervasive developmental disorders in the British nationwide survey of child mental health. Int. Rev. Psychiatry 2003, 15, 158–165. [Google Scholar] [CrossRef]
- Skjeldal, O.H.; von Tetzchner, S.; Aspelund, F.; Herder, G.A.; Lofterød, B. Rett syndrome: Geographic variation in prevalence in Norway. Brain Dev. 1997, 19, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Pini, G.; Milan, M.; Zappella, M. Rett syndrome in Northern Tuscany (Italy): Family tree studies. Clin. Genet. 1996, 50, 486–490. [Google Scholar] [CrossRef] [PubMed]
- Epstein, L.G. Rett Syndrome--Clinical and Biological Aspects: Studies on 130 Swedish Females; Cambridge University Press: Cambridge, UK, 1995; Volume 52, ISBN 0521412838. [Google Scholar]
- Humphreys, P.; Barrowman, N. The Incidence and Evolution of Parkinsonian Rigidity in Rett Syndrome: A Pilot Study. Can. J. Neurol. Sci. J. Can. des Sci. Neurol. 2016, 43, 567–573. [Google Scholar] [CrossRef] [Green Version]
- Hagberg, B. Clinical manifestations and stages of rett syndrome. Ment. Retard. Dev. Disabil. Res. Rev. 2002, 8, 61–65. [Google Scholar] [CrossRef]
- Neul, J.L.; Kaufmann, W.E.; Glaze, D.G.; Christodoulou, J.; Clarke, A.J.; Bahi-Buisson, N.; Leonard, H.; Bailey, M.E.S.; Schanen, N.C.; Zappella, M.; et al. Rett syndrome: Revised diagnostic criteria and nomenclature. Ann. Neurol. 2010, 68, 944–950. [Google Scholar] [CrossRef] [Green Version]
- Katz, D.M.; Bird, A.; Coenraads, M.; Gray, S.J.; Menon, D.U.; Philpot, B.D.; Tarquinio, D.C. Rett Syndrome: Crossing the Threshold to Clinical Translation. Trends Neurosci. 2016, 39, 100–113. [Google Scholar] [CrossRef] [Green Version]
- Lane, J.B.; Lee, H.S.; Smith, L.W.; Cheng, P.; Percy, A.K.; Glaze, D.G.; Neul, J.L.; Motil, K.J.; Barrish, J.O.; Skinner, S.A.; et al. Clinical severity and quality of life in children and adolescents with Rett syndrome. Neurology 2011, 77, 1812–1818. [Google Scholar] [CrossRef]
- Lee, J.; Leonard, H.; Piek, J.; Downs, J. Early development and regression in Rett syndrome. Clin. Genet. 2013, 84, 572–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lotan, M.; Ben-Zeev, B. Rett Syndrome. A Review with Emphasis on Clinical Characteristics and Intervention. Sci. World J. 2006, 6, 1517–1541. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, C.D.M.; Savelsbergh, G.; Smorenburg, A.; Graciani, Z.; Torriani-Pasin, C.; de Abreu, L.C.; Valenti, V.; Kok, F. Quantification of functional abilities in Rett syndrome: A comparison between stages III and IV. Neuropsychiatr. Dis. Treat. 2014, 10, 1213–1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smeets, E.E.; Schrander-Stumpel, C.T.R.M. Rett Syndrome. In Management of Genetic Syndromes, 3d ed.; Department of Clinical Genetics, Academic Hospital Maastricht: Maastricht, The Netherlands, 2010; pp. 677–691. ISBN 9780470191415. [Google Scholar]
- Vignoli, A.; La Briola, F.; Peron, A.; Turner, K.; Savini, M.; Cogliati, F.; Russo, S.; Canevini, M.P. Medical care of adolescents and women with Rett syndrome: An Italian study. Am. J. Med. Genet. Part A 2011, 158A, 13–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halbach, N.; Smeets, E.; Steinbusch, C.; Maaskant, M.; van Waardenburg, D.; Curfs, L. Aging in Rett syndrome: A longitudinal study. Clin. Genet. 2012, 84, 223–229. [Google Scholar] [CrossRef]
- Michlovitz, S.L.; Harris, B.A.; Watkins, M.P. Therapy interventions for improving joint range of motion: A systematic review. J. Hand Ther. 2004, 17, 118–131. [Google Scholar] [CrossRef] [PubMed]
- Svane, C.; Nielsen, J.B.; Lorentzen, J. Nonsurgical Treatment Options for Muscle Contractures in Individuals with Neurologic Disorders: A Systematic Review With Meta-Analysis. Arch. Rehabilit. Res. Clin. Transl. 2021, 3, 100104. [Google Scholar] [CrossRef]
- Romano, A.; Di Rosa, G.; Tisano, A.; Fabio, R.A.; Lotan, M. Effects of a remotely supervised motor rehabilitation program for individuals with Rett syndrome at home. Disabil. Rehabilit. 2021, 44, 5898–5908. [Google Scholar] [CrossRef] [PubMed]
- Richmond, T.; Peterson, C.; Cason, J.; Billings, M.; Terrell, E.A.; Lee, A.C.W.; Towey, M.; Parmanto, B.; Saptano, A.; Cohn, E.R.; et al. American Telemedicine Association’s Principles for Delivering Telerehabilitation Services. Int. J. Telerehabilit. 2017, 9, 63–68. [Google Scholar] [CrossRef] [Green Version]
- Cason, J.; Cohn, E.R. Telepractice: An Overview and Best Practices. Perspect. Augment. Altern. Commun. 2014, 23, 4–17. [Google Scholar] [CrossRef]
- Fabio, R.A.; Semino, M.; Giannatiempo, S.; Caprì, T.; Iannizzotto, G.; Nucita, A. Comparing Advanced with Basic Telerehabilitation Technologies for Patients with Rett Syndrome—A Pilot Study on Behavioral Parameters. Int. J. Environ. Res. Public Health 2022, 19, 507. [Google Scholar] [CrossRef] [PubMed]
- Lim, J.; Greenspoon, D.; Hunt, A.; McAdam, L. Rehabilitation interventions in Rett syndrome: A scoping review. Dev. Med. Child Neurol. 2020, 62, 906–916. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, F.; Iannizzotto, G.; Lo Bello, L. A Person Authentication System Based on RFID Tags and a Cascade of Face Recognition Algorithms. IEEE Trans. Circuits Syst. Video Technol. 2016, 27, 1676–1690. [Google Scholar] [CrossRef]
- Iannizzotto, G.; Lo Bello, L.; Nucita, A.; Grasso, G.M. A Vision and Speech Enabled, Customizable, Virtual Assistant for Smart Environments. In Proceedings of the 2018 11th International Conference on Human System Interaction (HSI), Gdansk, Poland, 4–6 July 2018; pp. 50–56. [Google Scholar] [CrossRef]
- Knippenberg, E.; Verbrugghe, J.; Lamers, I.; Palmaers, S.; Timmermans, A.; Spooren, A. Markerless motion capture systems as training device in neurological rehabilitation: A systematic review of their use, application, target population and efficacy. J. Neuroeng. Rehabilit. 2017, 14, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Prima, O.D.; Imabuchi, T.; Ono, Y.; Murata, Y.; Ito, H.; Nishimura, Y. Single Camera 3D Human Pose Estimation for Tele-rehabilitation. In Proceedings of the eTELEMED 2019: The Eleventh International Conference on eHealth, Telemedicine, and Social Medicine, Athens, Greece, 24–28 February 2019. [Google Scholar]
- Prima, O.D.; Ono, Y.; Murata, Y.; Ito, H.; Imabuchi, T.; Nishimura, Y. Evaluation of Joint Range of Motion Measured by Vision Cameras. Int. J. Adv. Life Sci. 2019, 11, 128–137. [Google Scholar]
- Lam, W.W.T.; Fong, K.N.K. The application of markerless motion capture (MMC) technology in rehabilitation programs: A systematic review and meta-analysis. Virtual Real. 2022, 1–16. [Google Scholar] [CrossRef]
- Scott, B.; Seyres, M.; Philp, F.; Chadwick, E.K.; Blana, D. Healthcare Applications of Single Camera Markerless Motion Cap-ture: A Scoping Review. PeerJ 2022, 10, e13517. [Google Scholar] [CrossRef] [PubMed]
- Pasinetti, S.; Nuzzi, C.; Covre, N.; Luchetti, A.; Maule, L.; Serpelloni, M.; Lancini, M. Validation of Marker-Less System for the Assessment of Upper Joints Reaction Forces in Exoskeleton Users. Sensors 2020, 20, 3899. [Google Scholar] [CrossRef]
- Vilas-Boas, M.D.C.; Rocha, A.P.; Choupina, H.M.P.; Cardoso, M.N.; Fernandes, J.M.; Coelho, T.; Cunha, J.P.S. Portable RGB-D Camera-Based System for Assessing Gait Impairment Progression in ATTRv Amyloidosis. Appl. Sci. 2022, 12, 10203. [Google Scholar] [CrossRef]
- Zhang, D.; Wu, Y.; Guo, M.; Chen, Y. Deep Learning Methods for 3D Human Pose Estimation under Different Supervision Paradigms: A Survey. Electronics 2021, 10, 2267. [Google Scholar] [CrossRef]
- Cerfoglio, S.; Ferraris, C.; Vismara, L.; Amprimo, G.; Priano, L.; Pettiti, G.; Galli, M.; Mauro, A.; Cimolin, V. Kinect-Based Assessment of Lower Limbs during Gait in Post-Stroke Hemiplegic Patients: A Narrative Review. Sensors 2022, 22, 4910. [Google Scholar] [CrossRef]
- Reimer, L.M.; Kapsecker, M.; Fukushima, T.; Jonas, S.M. Evaluating 3D Human Motion Capture on Mobile Devices. Appl. Sci. 2022, 12, 4806. [Google Scholar] [CrossRef]
- Rybarczyk, Y.; Medina, J.L.P.; Leconte, L.; Jimenes, K.; González, M.; Esparza, D. Implementation and Assessment of an Intelligent Motor Tele-Rehabilitation Platform. Electronics 2019, 8, 58. [Google Scholar] [CrossRef] [Green Version]
- Vilas-Boas, M.D.C.; Rocha, A.P.; Choupina, H.M.P.; Cardoso, M.N.; Fernandes, J.M.; Coelho, T.; Cunha, J.P.S. Validation of a Single RGB-D Camera for Gait Assessment of Polyneuropathy Patients. Sensors 2019, 19, 4929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sosnoff, J.J.; Sandroff, B.; Motl, R.W. Quantifying gait abnormalities in persons with multiple sclerosis with minimal disability. Gait Posture 2012, 36, 154–156. [Google Scholar] [CrossRef] [PubMed]
- Wade, L.; Needham, L.; McGuigan, P.; Bilzon, J. Applications and Limitations of Current Markerless Motion Capture Meth-ods for Clinical Gait Biomechanics. PeerJ 2022, 10, e12995. [Google Scholar] [CrossRef] [PubMed]
- Vernon, S.; Paterson, K.; Bower, K.; McGinley, J.; Miller, K.; Pua, Y.-H.; Clark, R.A. Quantifying Individual Components of the Timed Up and Go Using the Kinect in People Living with Stroke. Neurorehabilit. Neural Repair 2014, 29, 48–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scano, A.; Caimmi, M.; Malosio, M.; Tosatti, L.M. Using Kinect for upper-limb functional evaluation in home rehabilitation: A comparison with a 3D stereoscopic passive marker system. In Proceedings of the 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Sao Paulo, Brazil, 12–15 August 2014; pp. 561–566. [Google Scholar] [CrossRef]
- Tsuji, T.; Nakashima, S.; Hayashi, H.; Soh, Z.; Furui, A.; Shibanoki, T.; Shima, K.; Shimatani, K. Markerless Measurement and Evaluation of General Movements in Infants. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Støen, R.; on behalf of the CIMA Norway Study Group; Songstad, N.T.; Silberg, I.E.; Fjørtoft, T.; Jensenius, A.R.; Adde, L. Computer-based video analysis identifies infants with absence of fidgety movements. Pediatr. Res. 2017, 82, 665–670. [Google Scholar] [CrossRef]
- Vilas-Boas, M.D.C.; Rocha, A.P.; Choupina, H.M.P.; Cardoso, M.; Fernandes, J.M.; Coelho, T.; Cunha, J.P.S. TTR-FAP Progression Evaluation Based on Gait Analysis Using a Single RGB-D Camera. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, Berlin, Germany, 23–27 July 2019; pp. 5494–5497. [Google Scholar] [CrossRef]
- Han, J.J.; Kurillo, G.; Abresch, R.T.; de Bie, E.; Nicorici, A.; Bajcsy, R. Reachable workspace in facioscapulohumeral muscular dystrophy (FSHD) by kinect. Muscle Nerve 2014, 51, 168–175. [Google Scholar] [CrossRef] [Green Version]
- Stone, E.E.; Skubic, M. Fall Detection in Homes of Older Adults Using the Microsoft Kinect. IEEE J. Biomed. Health Inform. 2014, 19, 290–301. [Google Scholar] [CrossRef]
- Lee, S.H.; Yoon, C.; Chung, S.G.; Kim, H.C.; Kwak, Y.; Park, H.-W.; Kim, K. Measurement of Shoulder Range of Motion in Patients with Adhesive Capsulitis Using a Kinect. PLoS ONE 2015, 10, e0129398. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.C.; Affandi, M.; Basah, S.N.; Din, M.Y. Evaluating Lower Limb Joint Flexion by Computerized Visual Tracking System and Compared with Electrogoniometer and Universal Goniometer. J. Telecommun. Electr. Comput. Eng. 2018, 10, 9–14. [Google Scholar]
- Díaz, S.; Stephenson, J.B.; Labrador, M.A. Use of Wearable Sensor Technology in Gait, Balance, and Range of Motion Analysis. Appl. Sci. 2019, 10, 234. [Google Scholar] [CrossRef] [Green Version]
- Walmsley, C.P.; Williams, S.A.; Grisbrook, T.; Elliott, C.; Imms, C.; Campbell, A. Measurement of Upper Limb Range of Mo-tion Using Wearable Sensors: A Systematic Review. Sports Med. Open 2018, 4, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agustín, R.M.-S.; García-Vidal, J.A.; Cánovas-Ambit, G.; Vecchia, A.A.-D.; López-Nicolás, M.; Medina-Mirapeix, F. Validity and Reliability of a New Optoelectronic System for Measuring Active Range of Motion of Upper Limb Joints in Asymptomatic and Symptomatic Subjects. J. Clin. Med. 2019, 8, 1851. [Google Scholar] [CrossRef] [Green Version]
- Ropars, M.; Cretual, A.; Thomazeau, H.; Kaila, R.; Bonan, I. Volumetric definition of shoulder range of motion and its correlation with clinical signs of shoulder hyperlaxity. A motion capture study. J. Shoulder Elb. Surg. 2015, 24, 310–316. [Google Scholar] [CrossRef]
- Caprì, T.; Fabio, R.A.; Iannizzotto, G.; Nucita, A. The TCTRS Project: A Holistic Approach for Telerehabilitation in Rett Syndrome. Electronics 2020, 9, 491. [Google Scholar] [CrossRef] [Green Version]
- Carpenzano, A.; Caponetto, R.; Bello, L.L.; Mirabella, O. Fuzzy traffic smoothing: An approach for real-time communication over Ethernet networks. In Proceedings of the 4th IEEE International Workshop on Factory Communication Systems, Vasteras, Sweden, 28–30 August 2002; pp. 241–248. [Google Scholar] [CrossRef]
- Fabio, R.A.; Martinazzoli, C.; Antonietti, A. Construction and standardization of the RARS (rett assessment rating scale) tool. [Costruzione e standardizzazione dello strumento RARS (Rett Assessment Rating Scale)]. Life Span Disabil. 2005, 8, 34–45. [Google Scholar]
- Cao, Z.; Simon, T.; Wei, S.E.; Sheikh, Y. Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1302–1310. [Google Scholar] [CrossRef] [Green Version]
- Herrero, P.; Carrera, P.; García, E.; Gómez-Trullén, E.M.; Blazquez, B.O. Reliability of goniometric measurements in children with cerebral palsy: A comparative analysis of universal goniometer and electronic inclinometer. A pilot study. BMC Musculoskelet. Disord. 2011, 12, 155. [Google Scholar] [CrossRef] [Green Version]
- Stahlhut, M.; Downs, J.; Wong, K.; Bisgaard, A.-M.; Nordmark, E. Feasibility and Effectiveness of an Individualized 12-Week “Uptime” Participation (U-PART) Intervention in Girls and Women with Rett Syndrome. Phys. Ther. 2019, 100, 168–179. [Google Scholar] [CrossRef] [PubMed]
Participants | Patient ID | Clinical Stage | Age | MeCP2 Mutation | Level of Severity (RARS) | Functional Ability Level |
---|---|---|---|---|---|---|
1 | L.G | IV | 25 | T158M | 75.5 | 75 |
2 | L.A | IV | 25 | T158M | 75.5 | 75 |
3 | D.D | IV | 31 | R306C | 75 | 90 |
4 | C.A | III | 5 | T158M | 58 | 84 |
5 | A.C | III | 5 | ---- | 71 | 71 |
6 | C.L | III | 4 | P152R | 69.5 | 109 |
7 | F.D | IV | 18 | T158M | 64 | 136 |
8 | S.M | III | 14 | T158M | 62 | 91 |
9 | D.F | IV | 25 | R255X | 64 | 111 |
10 | C.M | III | 7 | P322L | 65.5 | 104 |
1 | S.D | IV | 15 | P133C | 72 | 151 |
12 | B.C | III | 5 | R255X | 71 | 75 |
13 | S.A | III | 10 | P322L | 75 | 108 |
14 | B.G | IV | 24 | P152R | 75 | 74 |
15 | G.L | IV | 10 | R255X | 75.5 | 84 |
16 | S.L | IV | 9 | T158M | 70 | 78 |
17 | B.A | III | 10 | P152R | 75 | 71 |
18 | P.V | III | 8 | ---- | 65.5 | 69 |
19 | L.M | III | 9 | P322L | 58 | 136 |
20 | M.S | IV | 24 | T158M | 64 | 110 |
21 | S.P | IV | 22 | T158M | 62 | 105 |
Joint | Baseline (T1) | Post Test 1 (T2) | Post Test 2 (T3) | p-Value | ||
---|---|---|---|---|---|---|
T1-T2 | T1-T3 | T2-T3 | ||||
Left shoulder flexion | 137.83 ± 27.93° | 131.28 ± 30.03° | 146.61 ± 25.97° | 0.003 | 0.003 | 0.05 |
(89° to 160°) | (77° to 165°) | (98° to 176°) | ||||
Right shoulder flexion | 125.73 ± 26.87° | 135.19 ± 24.56° | 147.52 ± 24.71° | 0.045 | 0.016 | 0.009 |
(89° to 160°) | (90° to 165°) | (98° to 176°) | ||||
Left shoulder abduction | 136.56 ± 29.23° | 137.49 ± 24.33° | 150.16 ± 21.51° | 0.92 | 0.021 | 0.05 |
(80° to 168°) | (100° to 165°) | (106° to 160°) | ||||
Right shoulder abduction | 130.02 ± 28.85° | 135.48 ± 27.56° | 145.46 ± 24.39° | 0.26 | 0.05 | 0.018 |
(84° to 177°) | (87 to 177°) | (108° to 177° | ||||
Left elbow flexion | 137.85 ± 23.74° | 150.32 ± 12.11° | 153.97 ± 9.3° | 0.28 | 0.13 | 0.35 |
(127° to 167°) | (136° to 179°) | (145° to 178°) | ||||
Right elbow flexion | 132.75 ± 24.03° | 147.80 ± 8.83° | 149.2 ± 10.89° | 0.01 | 0.01 | 0.85 |
(85° to 160°) | (128° to 161°) | (127° to 167°) | ||||
Left elbow extension | 14.99 ± 14.75° | 12.55 ± 5.9° | 11.53 ± 6.77° | 0.72 | 0.39 | 0.62 |
(2° to 54°) | (3° to 20°) | (4° to 22°) | ||||
Right elbow extension | 16.33 ± 11.09° | 9.8 ± 7.05° | 10.18 ± 8.85° | 0.02 | 0.005 | 0.79 |
(4° to 40°) | (4° to 25°) | (0° to 28°) | ||||
Left knee extension | 11.55 ± 11.12° | 10,18 ± 10,43° | 9.45 ± 10.65° | 0.21 | 0.06 | 0.56 |
(2° to 36°) | (1° to 30°) | (1° to 32°) | ||||
Right knee extension | 12 ± 11.74° | 12.36 ± 10.9° | 9.27 ± 8.17° | 0.85 | 0.24 | 0.07 |
(2° to 44°) | (1° to 40°) | (1° to 27°) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nucita, A.; Iannizzotto, G.; Perina, M.; Romano, A.; Fabio, R.A. Telerehabilitation with Computer Vision-Assisted Markerless Measures: A Pilot Study with Rett Syndrome Patients. Electronics 2023, 12, 435. https://doi.org/10.3390/electronics12020435
Nucita A, Iannizzotto G, Perina M, Romano A, Fabio RA. Telerehabilitation with Computer Vision-Assisted Markerless Measures: A Pilot Study with Rett Syndrome Patients. Electronics. 2023; 12(2):435. https://doi.org/10.3390/electronics12020435
Chicago/Turabian StyleNucita, Andrea, Giancarlo Iannizzotto, Michela Perina, Alberto Romano, and Rosa Angela Fabio. 2023. "Telerehabilitation with Computer Vision-Assisted Markerless Measures: A Pilot Study with Rett Syndrome Patients" Electronics 12, no. 2: 435. https://doi.org/10.3390/electronics12020435
APA StyleNucita, A., Iannizzotto, G., Perina, M., Romano, A., & Fabio, R. A. (2023). Telerehabilitation with Computer Vision-Assisted Markerless Measures: A Pilot Study with Rett Syndrome Patients. Electronics, 12(2), 435. https://doi.org/10.3390/electronics12020435