Large-Scale β-Ga2O3 Trench MOS-Type Schottky Barrier Diodes with 1.02 Ideality Factor and 0.72 V Turn-On Voltage
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Z.; Gong, H.; Meng, C.; Yu, X.; Sun, X.; Zhang, C.; Ji, X.; Ren, F.; Gu, S.; Zheng, Y.; et al. Majority and Minority Carrier Traps in NiO/β-Ga2O3 p+-n Heterojunction Diode. IEEE Trans. Electron Devices 2022, 69, 981–987. [Google Scholar] [CrossRef]
- Orita, M.; Ohta, H.; Hirano, M.; Hosono, H. Deep-ultraviolet transparent conductive β-Ga2O3 thin films. Appl. Phys. Lett. 2000, 77, 4166–4168. [Google Scholar] [CrossRef]
- Higashiwaki, M.; Sasaki, K.; Kuramata, A.; Masui, T.; Yamakoshi, S. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl. Phys. Lett. 2012, 100, 013504. [Google Scholar] [CrossRef]
- Mastro, M.A.; Kuramata, A.; Calkins, J.; Kim, J.; Ren, F.; Peartong, S.J. Opportunities and Future Directions for Ga2O3. ECS J. Solid State Sci. Technol. 2017, 6, P356–P359. [Google Scholar] [CrossRef]
- Villora, E.G.; Morioka, Y.; Atou, T.; Sugawara, T.; Kikuchi, A.; Fukuda, T. Infrared reflectance and electrical conductivity of β-Ga2O3. Phys. Status Solidi A-Appl. Res. 2002, 193, 187–195. [Google Scholar] [CrossRef]
- Kuramata, A.; Koshi, K.; Watanabe, S.; Yamaoka, Y.; Masui, T.; Yamakoshi, S. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn. J. Appl. Phys. 2016, 55, 1202A2. [Google Scholar] [CrossRef]
- Tomm, Y.; Reiche, P.; Klimm, D.; Fukuda, T. Czochralski grown Ga2O3 crystals. J. Cryst. Growth 2000, 220, 510–514. [Google Scholar] [CrossRef]
- Sasaki, K.; Higashiwaki, M.; Kuramata, A.; Masui, T.; Yamakoshi, S. Growth temperature dependences of structural and electrical properties of Ga2O3 epitaxial films grown on β-Ga2O3 (010) substrates by molecular beam epitaxy. J. Cryst. Growth 2014, 392, 30–33. [Google Scholar] [CrossRef]
- Wagner, G.; Baldini, M.; Gogova, D.; Schmidbauer, M.; Schewski, R.; Albrecht, M.; Galazka, Z.; Klimm, D.; Fornari, R. Homoepitaxial growth of β-Ga2O3 layers by metal-organic vapor phase epitaxy. Phys. Status Solidi A-Appl. Mat. 2014, 211, 27–33. [Google Scholar] [CrossRef]
- Baldini, M.; Albrecht, M.; Fiedler, A.; Irmscher, K.; Klimm, D.; Schewski, R.; Wagner, G. Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers grown by metal organic vapour-phase epitaxy. J. Mater. Sci. 2016, 51, 3650–3656. [Google Scholar] [CrossRef]
- Konishi, K.; Goto, K.; Togashi, R.; Murakami, H.; Higashiwaki, M.; Kuramata, A.; Yamakoshi, S.; Monemar, B.; Kumagai, Y. Comparison of O2 and H2O as oxygen source for homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy. J. Cryst. Growth 2018, 492, 39–44. [Google Scholar] [CrossRef]
- Togashi, R.; Nomura, K.; Eguchi, C.; Fukizawa, T.; Goto, K.; Quang Tu, T.; Murakami, H.; Kumagai, Y.; Kuramata, A.; Yamakoshi, S.; et al. Thermal stability of β-Ga2O3 in mixed flows of H2 and N2. Jpn. J. Appl. Phys. 2015, 54, 041102. [Google Scholar] [CrossRef]
- Gucmann, F.; Nadazdy, P.; Husekova, K.; Dobrocka, E.; Priesol, J.; Egyenes, F.; Satka, A.; Rosova, A.; Tapajna, M. Thermal stability of rhombohedral α- and monoclinic β-Ga2O3 grown on sapphire by liquid-injection MOCVD. Mater. Sci. Semicond. Process. 2023, 156, 107289. [Google Scholar] [CrossRef]
- Lv, Y.; Zhou, X.; Long, S.; Song, X.; Wang, Y.; Liang, S.; He, Z.; Han, T.; Tan, X.; Feng, Z.; et al. Source-Field-Plated β-Ga2O3 MOSFET With Record Power Figure of Merit of 50.4 MW/cm2. IEEE Electron Device Lett. 2019, 40, 83–86. [Google Scholar] [CrossRef]
- Lv, Y.; Liu, H.; Zhou, X.; Wang, Y.; Song, X.; Cai, Y.; Yan, Q.; Wang, C.; Liang, S.; Zhang, J.; et al. Lateral β-Ga2O3 MOSFETs With High Power Figure of Merit of 277 MW/cm2. IEEE Electron Device Lett. 2020, 41, 537–540. [Google Scholar] [CrossRef]
- Montgomery, R.H.; Zhang, Y.; Yuan, C.; Kim, S.; Shi, J.; Itoh, T.; Mauze, A.; Kumar, S.; Speck, J.; Graham, S. Thermal management strategies for gallium oxide vertical trench-fin MOSFETs. J. Appl. Phys. 2021, 129, 085301. [Google Scholar] [CrossRef]
- Zhou, X.; Ma, Y.; Xu, G.; Liu, Q.; Liu, J.; He, Q.; Zhao, X.; Long, S. Enhancement-mode β-Ga2O3 U-shaped gate trench vertical MOSFET realized by oxygen annealing. Appl. Phys. Lett. 2022, 121, 223501. [Google Scholar] [CrossRef]
- Konishi, K.; Goto, K.; Murakami, H.; Kumagai, Y.; Kuramata, A.; Yamakoshi, S.; Higashiwaki, M. 1-kV vertical Ga2O3 field-plated Schottky barrier diodes. Appl. Phys. Lett. 2017, 110, 103506. [Google Scholar] [CrossRef]
- Sasaki, K.; Wakimoto, D.; Thieu, Q.T.; Koishikawa, Y.; Kuramata, A.; Higashiwaki, M.; Yamakoshi, S. First Demonstration of Ga2O3 Trench MOS-Type Schottky Barrier Diodes. IEEE Electron Device Lett. 2017, 38, 783–785. [Google Scholar] [CrossRef]
- Hu, Z.; Zhou, H.; Kang, X.; Zhang, J.; Hao, Y.; Lv, Y.; Zhao, C.; Feng, Q.; Feng, Z.; Dang, K.; et al. Beveled Fluoride Plasma Treatment for Vertical β-Ga2O3 Schottky Barrier Diode With High Reverse Blocking Voltage and Low Turn-On Voltage. IEEE Electron Device Lett. 2020, 41, 441–444. [Google Scholar] [CrossRef]
- Roy, S.; Bhattacharyya, A.; Peterson, C.; Krishnamoorthy, S. 2.1 kV (001)-β-Ga2O3 vertical Schottky barrier diode with high-k oxide field plate. Appl. Phys. Lett. 2023, 122, 152101. [Google Scholar] [CrossRef]
- Neamen, D.A. Semiconductor Physics and Devices: Basic Principles, Fourth Edition, 4th ed.; Raghu Srinivasan: New York, NY, USA, 2012; pp. 338–339. [Google Scholar]
- Zhou, H.; Yan, Q.; Zhang, J.; Lv, Y.; Liu, Z.; Zhang, Y.; Dang, K.; Dong, P.; Feng, Z.; Feng, Q.; et al. High-Performance Vertical β-Ga2O3 Schottky Barrier Diode With Implanted Edge Termination. IEEE Electron Device Lett. 2019, 40, 1788–1791. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, S.; Liu, M.; Lv, Y.; Long, S.; Zhou, X.; Song, X.; Liang, S.; Han, T.; Tan, X.; et al. High-Voltage (-201) β-Ga2O3 Vertical Schottky Barrier Diode With Thermally-Oxidized Termination. IEEE Electron Device Lett. 2020, 41, 131–134. [Google Scholar] [CrossRef]
- Yan, Q.; Gong, H.; Zhang, J.; Ye, J.; Zhou, H.; Liu, Z.; Xu, S.; Wang, C.; Hu, Z.; Feng, Q.; et al. β-Ga2O3 hetero-junction barrier Schottky diode with reverse leakage current modulation and BV2/Ron, sp value of 0.93 GW/cm2. Appl. Phys. Lett. 2021, 118, 122102. [Google Scholar] [CrossRef]
- Gong, H.H.; Yu, X.X.; Xu, Y.; Chen, X.H.; Kuang, Y.; Lv, Y.J.; Yang, Y.; Ren, F.F.; Feng, Z.H.; Gu, S.L.; et al. β-Ga2O3 vertical heterojunction barrier Schottky diodes terminated with p-NiO field limiting rings. Appl. Phys. Lett. 2021, 118, 202102. [Google Scholar] [CrossRef]
- Li, W.; Hu, Z.; Nomoto, K.; Jinno, R.; Zhang, Z.; Tu, T.Q.; Sasaki, K.; Kuramata, A.; Jena, D.; Xing, H.G. 2.44 kV Ga2O3 vertical trench Schottky barrier diodes with very low reverse leakage current. In Proceedings of the IEEE Annual International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018. [Google Scholar] [CrossRef]
- Li, W.; Nomoto, K.; Hu, Z.; Jen, D.; Xing, H.G. Fin-channel orientation dependence of forward conduction in kV-class Ga2O3 trench Schottky barrier diodes. Appl. Phys. Express 2019, 12, 061007. [Google Scholar] [CrossRef]
- Li, W.; Nomoto, K.; Hu, Z.; Jena, D.; Xing, H.G. Field-Plated Ga2O3 Trench Schottky Barrier Diodes With a BV2/Ron, sp of up to 0.95 GW/cm2. IEEE Electron Device Lett. 2020, 41, 107–110. [Google Scholar] [CrossRef]
- Jian, Z.; Mohanty, S.; Ahmadi, E. Temperature-dependent current-voltage characteristics of β-Ga2O3 trench Schottky barrier diodes. Appl. Phys. Lett. 2020, 116, 152104. [Google Scholar] [CrossRef]
- Wilhelmi, F.; Kunori, S.; Sasaki, K.; Kuramata, A.; Komatsu, Y.; Lindemann, A. Packaged β-Ga2O3 Trench MOS Schottky Diode With Nearly Ideal Junction Properties. IEEE Trans. Power Electron. 2022, 37, 3737–3742. [Google Scholar] [CrossRef]
- Mehrotra, M.; Baliga, B.J. The trench MOS barrier Schottky (TMBS) rectifier. In Proceedings of the IEEE International Electron Devices Meeting, Washington, DC, USA, 5–8 December 1993. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, M.; Liu, Z.; Piedra, D.; Hu, J.; Gao, X.; Palacios, T. Trench formation and corner rounding in vertical GaN power devices. Appl. Phys. Lett. 2017, 110, 193506. [Google Scholar] [CrossRef]
- Yuekseltuerk, E.; Bengi, S. The frequency dependent complex dielectric and electric modulus properties of Au/P3HT/n-Si (MPS) Schottky barrier diode (SBD). J. Mater. Sci. Mater. Electron. 2023, 34, 1–13. [Google Scholar] [CrossRef]
- Dong, H.; Mu, W.; Hu, Y.; He, Q.; Fu, B.; Xue, H.; Qin, Y.; Jian, G.; Zhang, Y.; Long, S.; et al. C-V and J-V investigation of HfO2/Al2O3 bilayer dielectrics MOSCAPs on (OW) β-Ga2O3. AIP Adv. 2018, 8, 065215. [Google Scholar] [CrossRef]
- Sasaki, K.; Higashiwaki, M.; Kuramata, A.; Masui, T.; Yamakoshi, S. Ga2O3 Schottky Barrier Diodes Fabricated by Using Single-Crystal β-Ga2O3 (010) Substrates. IEEE Electron Device Lett. 2013, 34, 493–495. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Zhou, H.; Zhang, T.; Wang, H.; Feng, Z.; Hao, Y. Leakage current mechanisms of groove-type tungsten-anode GaN SBDs with ultra low turn-on voltage and low reverse current. Solid-State Electron. 2020, 169, 107807. [Google Scholar] [CrossRef]
- Hao, W.; He, Q.; Zhou, K.; Xu, G.; Xiong, W.; Zhou, X.; Jian, G.; Chen, C.; Zhao, X.; Long, S. Low defect density and small I–V curve hysteresis in NiO/β-Ga2O3 pn diode with a high PFOM of 0.65 GW/cm2. Appl. Phys. Lett. 2021, 118, 043501. [Google Scholar] [CrossRef]
- Fu, B.; Jian, G.; He, G.; Feng, B.; Mu, W.; Li, Y.; Jia, Z.; Li, Y.; Long, S.; Ding, S.; et al. Investigation on β-Ga2O3 (101) plane with high-density surface dangling bonds. J. Alloys Compd. 2021, 889, 161714. [Google Scholar] [CrossRef]
- Surdi, H.; Koeck, F.A.M.; Ahmad, M.F.; Thornton, T.J.; Nemanich, R.J.; Goodnick, S.M. Demonstration and Analysis of Ultrahigh Forward Current Density Diamond Diodes. IEEE Trans. Electron Devices 2022, 69, 254–261. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, H.; Zhou, X.; Liu, Y.; Liu, W.; Yang, J.; Zhang, H.; Xie, G.; Liu, W. Large-Scale β-Ga2O3 Trench MOS-Type Schottky Barrier Diodes with 1.02 Ideality Factor and 0.72 V Turn-On Voltage. Electronics 2023, 12, 4315. https://doi.org/10.3390/electronics12204315
He H, Zhou X, Liu Y, Liu W, Yang J, Zhang H, Xie G, Liu W. Large-Scale β-Ga2O3 Trench MOS-Type Schottky Barrier Diodes with 1.02 Ideality Factor and 0.72 V Turn-On Voltage. Electronics. 2023; 12(20):4315. https://doi.org/10.3390/electronics12204315
Chicago/Turabian StyleHe, Hao, Xinlong Zhou, Yinchi Liu, Wenjing Liu, Jining Yang, Hao Zhang, Genran Xie, and Wenjun Liu. 2023. "Large-Scale β-Ga2O3 Trench MOS-Type Schottky Barrier Diodes with 1.02 Ideality Factor and 0.72 V Turn-On Voltage" Electronics 12, no. 20: 4315. https://doi.org/10.3390/electronics12204315
APA StyleHe, H., Zhou, X., Liu, Y., Liu, W., Yang, J., Zhang, H., Xie, G., & Liu, W. (2023). Large-Scale β-Ga2O3 Trench MOS-Type Schottky Barrier Diodes with 1.02 Ideality Factor and 0.72 V Turn-On Voltage. Electronics, 12(20), 4315. https://doi.org/10.3390/electronics12204315