Investigation of the Effect of Different SiNx Thicknesses on the Characteristics of AlGaN/GaN High-Electron-Mobility Transistors in Ka-Band
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nakajima, S. GaN HEMTs for 5G base station applications. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 14.2.1–14.2.4. [Google Scholar]
- Yuk, K.; Branner, G.R.; Cui, C. Future directions for GaN in 5G and satellite communications. In Proceedings of the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), Boston, MA, USA, 6–9 August 2017; pp. 803–806. [Google Scholar]
- Mishra, U.K.; Parikh, P.; Wu, Y.-F. AlGaN/GaN HEMTs-an overview of device operation and applications. Proc. IEEE 2002, 90, 1022–1031. [Google Scholar] [CrossRef]
- Tewari, R.C.; Palo, P.; Maiti, J.; Routray, A. GaN-based Radar Micro-Doppler Augmentation for High Accuracy Fall Detection System. In Proceedings of the IECON 2022—48th Annual Conference of the IEEE Industrial Electronics Society, Brussels, Belgium, 17–20 October 2022; pp. 1–6. [Google Scholar]
- Sun, R.; Lai, J.; Chen, W.; Zhang, B. GaN Power Integration for High Frequency and High Efficiency Power Applications: A Review. IEEE Access 2020, 8, 15529–15542. [Google Scholar] [CrossRef]
- Palacios, T.; Chakraborty, A.; Rajan, S.; Poblenz, C.; Keller, S.; DenBaars, S.P.; Speck, J.S.; Mishra, U.K. High-power AlGaN/GaN HEMTs for Ka-band Applications. IEEE Electron Device Lett. 2005, 26, 781–783. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, D.; Cao, J.; Wang, F.; Yao, Y. A novel technology for turn-on voltage reduction of high-performance lateral heterojunction diode with source-gate shorted anode. Superlattices Microstruct. 2019, 125, 144–150. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.; Wang, S.; Chen, C.; Wang, Z.; Yao, Y. Design and Optimization on a Novel High-Performance Ultra-Thin Barrier AlGaN/GaN Power HEMT With Local Charge Compensation Trench. Appl. Sci. 2019, 9, 3054. [Google Scholar] [CrossRef]
- Wang, F.; Chen, W.; Sun, R.; Wang, Z.; Zhou, Q.; Zhang, B. An analytical model on the gate control capability in p-GaN Gate AlGaN/GaN high-electron-mobility transistors considering buffer acceptor traps. J. Phys. D Appl. Phys. 2020, 54, 095107. [Google Scholar] [CrossRef]
- Matsunami, H. State-of-the-art wide band-gap semiconductors for power electronic devices. In Proceedings of the International Meeting for Future of Electron Devices, Kyoto, Japan, 26–28 July 2004; pp. 21–22. [Google Scholar]
- Flack, T.J.; Pushpakaran, B.N.; Bayne, S.B. GaN Technology for Power Electronic Applications: A Review. J. Electron. Mater. 2016, 45, 2673–2682. [Google Scholar] [CrossRef]
- Khandelwal, S.; Goyal, N.; Fjeldly, T.A. A Physics-Based Analytical Model for 2DEG Charge Density in AlGaN/GaN HEMT devices. IEEE Trans. Electron Devices 2011, 58, 3622–3625. [Google Scholar] [CrossRef]
- Miranda Calero, J.A.; Rituerto-Gonzalez, E.; Luis-Mingueza, C.; Canabal, M.F.; Barcenas, A.R.; Lanza-Gutierrez, J.M.; Pelaez-Moreno, C.; Lopez-Ongil, C. Bindi: Affective Internet of Things to Combat Gender-Based Violence. IEEE Internet Things J. 2022, 9, 21174–21193. [Google Scholar] [CrossRef]
- Ropero, F.; Vaquerizo-Hdez, D.; Muñoz, P.; Barrero, D.F.; R-Moreno, M.D. LARES: An AI-based teleassistance system for emergency home monitoring. Cogn. Syst. Res. 2019, 56, 213–222. [Google Scholar] [CrossRef]
- Darwish, A.M.; Boutros, K.; Luo, B.; Huebschman, B.D.; Viveiros, E.; Hung, H.A. AlGaN/GaN Ka-Band 5-W MMIC Amplifier. IEEE Trans. Microw. Theory Tech. 2006, 54, 4456–4463. [Google Scholar] [CrossRef]
- Micovic, M.; Brown, D.F.; Regan, D.; Wong, J.; Tang, Y.; Herrault, F.; Santos, D.; Burnham, S.D.; Tai, J.; Prophet, E.; et al. High Frequency GaN HEMTs for RF MMIC Applications. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 3.3.1–3.3.4. [Google Scholar]
- Moon, J.S.; Wong, D.; Hu, M.; Hashimoto, P.; Antcliffe, M.; McGuire, C.; Micovic, M.; Willadson, P. 55% PAE and High Power Ka-Band GaN HEMTs with Linearized Transconductance via n+ GaN Source Contact Ledge. IEEE Electron Device Lett. 2008, 29, 834–837. [Google Scholar] [CrossRef]
- Nakatani, K.; Yamaguchi, Y.; Komatsuzaki, Y.; Sakata, S.; Shinjo, S.; Yamanaka, K. A Ka-Band High Efficiency Doherty Power Amplifier MMIC using GaN-HEMT for 5G Application. In Proceedings of the 2018 IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies (IMWS-5G), Dublin, Ireland, 30–31 August 2018; pp. 1–3. [Google Scholar]
- Nilchi, J.N.; Liu, R.; Li, S.; Akgul, M.; Rocheleau, T.O.; Nguyen, C.T.-C. Third order intermodulation distortion in capacitive-gap transduced micromechanical filters. In Proceedings of the 2015 Joint Conference of the IEEE International Frequency Control Symposium & the European Frequency and Time Forum, Denver, CO, USA, 12–16 April 2015; pp. 5–10. [Google Scholar]
- Toole, B.; Plett, C.; Cloutier, M. RF circuit implications of moderate inversion enhanced linear region in MOSFETs. IEEE Trans. Circuits Syst. I 2004, 51, 319–328. [Google Scholar] [CrossRef]
- Vuolevi, J.H.K.; Rahkonen, T.; Manninen, J.P.A. Measurement technique for characterizing memory effects in RF power amplifiers. IEEE Trans. Microw. Theory Tech. 2001, 49, 1383–1389. [Google Scholar] [CrossRef]
- Chiu, H.-C.; Fu, J.S.; Chen, C.-W. RF performance of GaAs pHEMT switches with various upper/lower δ-doped ratio designs. Solid-State Electron. 2009, 53, 181–184. [Google Scholar] [CrossRef]
- Liu, Z.H.; Ng, G.I.; Arulkumaran, S.; Maung, Y.K.; Teo, K.L.; Foo, S.C.; Sahmuganathan, V. Improved Linearity for Low-Noise Applications in 0.25-μm GaN MISHEMTs Using ALD Al2O3 as Gate Dielectric. IEEE Electron Device Lett. 2010, 31, 803–805. [Google Scholar] [CrossRef]
- Guidry, M.; Romanczyk, B.; Li, H.; Ahmadi, E.; Wienecke, S.; Zheng, X.; Keller, S.; Mishra, U.K. Demonstration of 30 GHz OIP3/PDC > 10 dB by MM-wave n-polar deep recess MISHEMTs. In Proceedings of the 2019 14th European Microwave Integrated Circuits Conference (EuMIC), Paris, France, 30 September–1 October 2019; pp. 64–67. [Google Scholar]
- Zhang, F.; Zheng, X.; Zhang, H.; Mi, M.; He, Y.; Du, M.; Ma, X.; Hao, Y. Linearity Enhancement of AlGaN/GaN HEMTS with Selective-Area Charge Implantation. IEEE Electron Device Lett. 2022, 43, 1838–1841. [Google Scholar] [CrossRef]
- Wang, P.; Ma, X.; Mi, M.; Zhang, M.; Zhu, J.; Zhou, Y.; Wu, S.; Liu, J.; Yang, L.; Hou, B.; et al. Influence of Fin-Like Configuration Parameters on the Linearity of AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 2021, 68, 1563–1569. [Google Scholar] [CrossRef]
- Lee, M.-W.; Lin, Y.-C.; Hsu, H.-T.; Gamiz, F.; Chang, E.-Y. Improvement of AlGaN/GaN HEMTs Linearity Using Etched-Fin Gate Structure for Ka Band Applications. Micromachines 2023, 14, 931. [Google Scholar] [CrossRef] [PubMed]
- Martinez, R.P.; Munzer, D.J.; Zhou, X.Y.; Shankar, B.; Schmidt, E.-M.; Wildnauer, K.; Wu, B.; Murmann, B.; Chowdhury, S. Best Practices to Quantify Linearity Performance of GaN HEMTs for Power Amplifier Applications. In Proceedings of the 2021 IEEE 8th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), Redondo Beach, CA, USA, 7–11 November 2021; pp. 85–89. [Google Scholar]
- Bhardwaj, N.; Upadhyay, B.B.; Parvez, B.; Pohekar, P.; Yadav, Y.; Sahu, A.; Patil, M.; Basak, S.; Sahu, J.; Sabiha, F.S.; et al. Improved RF-DC characteristics and reduced gate leakage in GaN MOS-HEMTs using thermally grown Nb2O5 Gate Dielectric. Phys. Scr. 2022, 98, 015805. [Google Scholar] [CrossRef]
- Visvkarma, A.K.; Laishram, R.; Kapoor, S.; Rawal, D.S.; Vinayak, S.; Saxena, M. Improvement in DC and pulse characteristics of AlGaN/GaN HEMT by employing dual metal gate structure. Semicond. Sci. Technol. 2019, 34, 105013. [Google Scholar] [CrossRef]
- Kwak, H.-T.; Chang, S.-B.; Kim, H.-J.; Jang, K.-W.; Yoon, H.; Lee, S.-H.; Lim, J.-W.; Kim, H.-S. Operational Improvement of AlGaN/GaN High Electron Mobility Transistor by an inner Field-Plate Structure. Appl. Sci. 2018, 8, 974. [Google Scholar] [CrossRef]
- Rawat, A.; Surana, V.K.; Meer, M.; Bhardwaj, N.; Ganguly, S.; Saha, D. Gate Current Reduction and Improved DC/RF Characteristics in GaN-Based MOS-HEMTs Using Thermally Grown TiO2 as a Dielectric. IEEE Trans. Electron Devices 2019, 66, 2557–2562. [Google Scholar] [CrossRef]
- Huang, S.; Liu, X.; Wang, X.; Kang, X.; Zhang, J.; Fan, J.; Shi, J.; Wei, K.; Zheng, Y.; Gao, H.; et al. Ultrathin-Barrier AlGaN/GaN Heterostructure: A Recess-Free Technology for Manufacturing High-Performance GaN-on-Si power Devices. IEEE Trans. Electron Devices 2018, 65, 207–214. [Google Scholar] [CrossRef]
- Mastro, M.A.; LaRoche, J.R.; Bassim, N.D.; Eddy, C.R. Simulation on the effect of non-uniform strain from the passivation layer on AlGaN/GaN HEMT. Microelectron. J. 2005, 36, 705–711. [Google Scholar] [CrossRef]
- Jeon, C.M.; Lee, J.-L. Effects of tensile stress induced by silicon nitride passivation on electrical characteristics of AlGaN/GaN heterostructure field-effect transistors. Appl. Phys. Lett. 2005, 86, 172101. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chang, E.Y.; Yamaguchi, H.; Hirayama, Y.; Chang, X.Y.; Chang, C.Y. Device Linearity Comparison of Uniformly Doped and δ-Doped In0.52Al0.48As/In0.6Ga0.4As Metamorphic HEMTs. IEEE Electron Device Lett. 2006, 27, 535–537. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Chang, E.Y.; Yamaguchi, H.; Wu, W.-C.; Chang, C.-Y. A δ-Doped InGaP/InGaAs pHEMT With Different Doping Profiles for Device-Linearity Improvement. IEEE Trans. Electron Devices 2007, 54, 1617–1625. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Shih, W.-C.; Lin, Y.-C.; Hsu, H.-T.; Hsu, H.-H.; Huang, Y.-X.; Lin, T.-W.; Wu, C.-H.; Wu, W.-H.; Maa, J.-S.; et al. Improved linearity and reliability in GaN metal–oxide–semiconductor high-electron-mobility transistors using nanolaminate La2O3/SiO2 gate dielectric. Jpn. J. Appl. Phys. 2016, 55, 04EG04. [Google Scholar] [CrossRef]
- Chiu, H.-C.; Yang, S.-C.; Chien, F.-T.; Chan, Y.-J. Improved device linearity of AlGaAs/InGaAs HFETs by a second mesa etching. IEEE Electron Device Lett. 2002, 23, 1–3. [Google Scholar] [CrossRef]
- Lee, P.-H.; Lin, Y.-C.; Hsu, H.-T.; Tsao, Y.-F.; Dee, C.-F.; Su, P.; Chang, E.Y. A Tall Gate Stem GaN HEMT with Improved Power Density and Efficiency at Ka-band. IEEE J. Electron Devices Soc. 2023, 11, 36–42. [Google Scholar] [CrossRef]
- Riedmuller, S.; Jacquet, J.-C.; Madel, M.; Chang, C.; Callet, G.; Piotrowicz, S.; Delage, S.; Gruenenpuett, J.; Blanck, H.; Scholz, F. A three-layer resist process for T- and Γ-gates in high electron mobility transistor fabrication. In Proceedings of the 2018 48th European Microwave Conference (EuMC), Madrid, Spain, 23–27 September 2018; pp. 1277–1280. [Google Scholar]
- Song, B.; Berardi, S.-R.; Wang, R.; Guo, J.; Hu, Z.; Yue, Y.; Faria, F.; Schuette, M.; Ketterson, A.; Beam, E.; et al. Effect of Fringing Capacitances on the RF Performance of GaN HEMTs with T-Gates. IEEE Trans. Electron Devices 2014, 61, 747–754. [Google Scholar] [CrossRef]
Parameters | tSiNx | ||
---|---|---|---|
150 nm | 200 nm | 250 nm | |
IDSS (mA/mm) | 766.5 | 861 | 861.5 |
Gm,max (mS/mm) | 290.1 | 312.9 | 320.9 |
Vth (V) | −3.1 | −3.7 | −3.7 |
GVS (V) | 1.0 | 1.1 | 1.2 |
−0.52938 | −0.47639 | −0.51950 | |
−0.25548 | −0.22635 | −0.24283 | |
/ | 0.48260 | 0.47514 | 0.46743 |
−0.00589 | −0.00491 | −0.00528 | |
/ | 0.01113 | 0.01031 | 0.01016 |
Parameters | tSiNx | ||
---|---|---|---|
150 nm | 200 nm | 250 nm | |
fT | 33.7 | 51.9 | 53.1 |
fmax | 76.9 | 132.9 | 138.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, C.-W.; Lin, Y.-C.; Lee, M.-W.; Chang, E.-Y. Investigation of the Effect of Different SiNx Thicknesses on the Characteristics of AlGaN/GaN High-Electron-Mobility Transistors in Ka-Band. Electronics 2023, 12, 4336. https://doi.org/10.3390/electronics12204336
Hsu C-W, Lin Y-C, Lee M-W, Chang E-Y. Investigation of the Effect of Different SiNx Thicknesses on the Characteristics of AlGaN/GaN High-Electron-Mobility Transistors in Ka-Band. Electronics. 2023; 12(20):4336. https://doi.org/10.3390/electronics12204336
Chicago/Turabian StyleHsu, Che-Wei, Yueh-Chin Lin, Ming-Wen Lee, and Edward-Yi Chang. 2023. "Investigation of the Effect of Different SiNx Thicknesses on the Characteristics of AlGaN/GaN High-Electron-Mobility Transistors in Ka-Band" Electronics 12, no. 20: 4336. https://doi.org/10.3390/electronics12204336
APA StyleHsu, C. -W., Lin, Y. -C., Lee, M. -W., & Chang, E. -Y. (2023). Investigation of the Effect of Different SiNx Thicknesses on the Characteristics of AlGaN/GaN High-Electron-Mobility Transistors in Ka-Band. Electronics, 12(20), 4336. https://doi.org/10.3390/electronics12204336