Advancements in Complex Knowledge Graph Question Answering: A Survey
Abstract
:1. Introduction
2. Preliminary
2.1. Knowledge Graph
2.2. Task Formulation
3. Materials and Methods
3.1. Graph-Metric-Based Methods
3.2. Graph Neural Network (GNN)-Based Methods
3.3. The Joint Reasoning of PLM+KG
4. Resource and Evaluation
4.1. Resource
4.1.1. KGs
4.1.2. Datasets
Datasets | KG | Year | Size | LB Score 1 | MC 2 | |||
---|---|---|---|---|---|---|---|---|
ComplexQuestions [64] | Freebase [6] | 2016 | 2100 | 43.3 20 | Acc, P, R, F1 | |||
42.9 22 | ||||||||
42.8 20 | ||||||||
ComplexWebQuestions [19] | Freebase [6] | 2018 | 34,689 | 70.4 21 | P, F1 | |||
53.9 21 | ||||||||
50 20 | ||||||||
GrailQA [60] | Freebase [6] | 2021 | 64,331 | 73.42 23 | 81.87 23 | EM, F1 | ||
75.38 22 | 81.70 22 | |||||||
76.31 22 | 81.52 22 | |||||||
KQApro [61] | Wikidata [8] | 2022 | 117,970 | 95.32 23 | Acc, F1 | |||
93.85 22 | ||||||||
92.45 21 | ||||||||
LC-QuAD [62] | DBpedia [7] | 2018 | 5000 | - | - | 91 22 | P, R, F1 | |
88 23 | 56 23 | 68 23 | ||||||
88.11 22 | 83.04 22 | 83.08 22 | ||||||
LC-QuAD2.0 [63] | DBpedia [7] and Wikidata [8] | 2019 | 30,000 | 92 22 91 22 86 22 | F1 |
4.2. Metrics
4.2.1. Reliability
4.2.2. Robustness
5. Trends and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balažević, I.; Allen, C.; Hospedales, T.M. Tucker: Tensor factorization for knowledge graph completion. arXiv 2019, arXiv:1901.09590. [Google Scholar]
- Jiang, Z.; Chi, C.; Zhan, Y. Research on medical question answering system based on knowledge graph. IEEE Access 2021, 9, 21094–21101. [Google Scholar] [CrossRef]
- Guo, Q.; Cao, S.; Yi, Z. A medical question answering system using large language models and knowledge graphs. Int. J. Intell. Syst. 2022, 37, 8548–8564. [Google Scholar] [CrossRef]
- Hou, X.; Zhu, C.; Li, Y.; Wang, P.; Peng, X. Question answering system based on military knowledge graph. In Proceedings of the International Conference on Electronic Information Engineering and Computer Communication (EIECC 2021), Changchun, China, 23–26 September 2021; SPIE: Bellingham, WA, USA, 2022; Volume 12172, pp. 33–39. [Google Scholar]
- Huang, J.; Chen, Y.; Li, Y.; Yang, Z.; Gong, X.; Wang, F.L.; Xu, X.; Liu, W. Medical knowledge-based network for Patient-oriented Visual Question Answering. Inf. Process. Manag. 2023, 60, 103241. [Google Scholar] [CrossRef]
- Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; Taylor, J. Freebase: A collaboratively created graph database for structuring human knowledge. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, BC, Canada, 10–12 June 2008; pp. 1247–1250. [Google Scholar]
- Lehmann, J.; Isele, R.; Jakob, M.; Jentzsch, A.; Kontokostas, D.; Mendes, P.N.; Hellmann, S.; Morsey, M.; Van Kleef, P.; Auer, S.; et al. Dbpedia–a large-scale, multilingual knowledge base extracted from wikipedia. Semant. Web 2015, 6, 167–195. [Google Scholar] [CrossRef]
- Pellissier Tanon, T.; Vrandečić, D.; Schaffert, S.; Steiner, T.; Pintscher, L. From freebase to wikidata: The great migration. In Proceedings of the 25th International Conference on World Wide Web, Montreal, QC, Canada, 11–15 April 2016; pp. 1419–1428. [Google Scholar]
- Suchanek, F.M.; Kasneci, G.; Weikum, G. Yago: A core of semantic knowledge. In Proceedings of the 16th International Conference on World Wide Web, Banff, AB, Canada, 8–12 May 2007; pp. 697–706. [Google Scholar]
- Lan, Y.; He, G.; Jiang, J.; Jiang, J.; Zhao, W.X.; Wen, J.R. Complex knowledge base question answering: A survey. IEEE Trans. Knowl. Data Eng. 2022, 35, 11196–11215. [Google Scholar] [CrossRef]
- Mitra, S.; Ramnani, R.; Sengupta, S. Constraint-based Multi-hop Question Answering with Knowledge Graph. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track, Online, Seattle, WA, USA, 10–15 July 2022; pp. 280–288. [Google Scholar]
- Gomes, J., Jr.; de Mello, R.C.; Ströele, V.; de Souza, J.F. A study of approaches to answering complex questions over knowledge bases. Knowl. Inf. Syst. 2022, 64, 2849–2881. [Google Scholar] [CrossRef]
- Jin, W.; Zhao, B.; Yu, H.; Tao, X.; Yin, R.; Liu, G. Improving embedded knowledge graph multi-hop question answering by introducing relational chain reasoning. Data Min. Knowl. Discov. 2023, 37, 255–288. [Google Scholar] [CrossRef]
- Bi, X.; Nie, H.; Zhang, G.; Hu, L.; Ma, Y.; Zhao, X.; Yuan, Y.; Wang, G. Boosting question answering over knowledge graph with reward integration and policy evaluation under weak supervision. Inf. Process. Manag. 2023, 60, 103242. [Google Scholar] [CrossRef]
- Wu, P.; Zhang, X.; Feng, Z. A survey of question answering over knowledge base. In Proceedings of the Knowledge Graph and Semantic Computing: Knowledge Computing and Language Understanding: 4th China Conference, CCKS 2019, Hangzhou, China, 24–27 August 2019, Revised Selected Papers 4; Springer: Berlin/Heidelberg, Germany, 2019; pp. 86–97. [Google Scholar]
- Zhang, L.; Zhang, J.; Ke, X.; Li, H.; Huang, X.; Shao, Z.; Cao, S.; Lv, X. A survey on complex factual question answering. AI Open 2023, 4, 1–12. [Google Scholar] [CrossRef]
- Wang, X.; Yang, S. A tutorial and survey on fault knowledge graph. In Proceedings of the Cyberspace Data and Intelligence, and Cyber-Living, Syndrome, and Health: International 2019 Cyberspace Congress, CyberDI and CyberLife, Beijing, China, 16–18 December 2019; Proceedings, Part II 3. Springer: Berlin/Heidelberg, Germany, 2019; pp. 256–271. [Google Scholar]
- Beckett, D.; Berners-Lee, T.; Prud’hommeaux, E.; Carothers, G. RDF 1.1 Turtle. World Wide Web Consort. 2014, 18–31. [Google Scholar]
- Talmor, A.; Berant, J. The web as a knowledge-base for answering complex questions. arXiv 2018, arXiv:1803.06643. [Google Scholar]
- Francis, N.; Green, A.; Guagliardo, P.; Libkin, L.; Lindaaker, T.; Marsault, V.; Plantikow, S.; Rydberg, M.; Selmer, P.; Taylor, A. Cypher: An evolving query language for property graphs. In Proceedings of the 2018 International Conference on Management of Data, Houston, TX, USA, 10–15 June 2018; pp. 1433–1445. [Google Scholar]
- Liang, P. Lambda dependency-based compositional semantics. arXiv 2013, arXiv:1309.4408. [Google Scholar]
- Kilgarriff, A. Wordnet: An Electronic Lexical Database; MIT Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Speer, R.; Chin, J.; Havasi, C. Conceptnet 5.5: An open multilingual graph of general knowledge. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [Google Scholar]
- Dong, Z.; Dong, Q. HowNet-a hybrid language and knowledge resource. In Proceedings of the International Conference on Natural Language Processing and Knowledge Engineering, Beijing, China, 26–29 October 2003; IEEE: Piscataway, NJ, USA, 2003; pp. 820–824. [Google Scholar]
- Zamini, M.; Reza, H.; Rabiei, M. A review of knowledge graph completion. Information 2022, 13, 396. [Google Scholar] [CrossRef]
- Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O. Translating embeddings for modeling multi-relational data. In Proceedings of the 26th International Conference on Neural Information Processing Systems-Volume 2; Curran Associates Inc.: Red Hook, NY, USA, 2013; pp. 2787–2795. [Google Scholar]
- Nickel, M.; Tresp, V.; Kriegel, H.P. A three-way model for collective learning on multi-relational data. In Proceedings of the ICML, Bellevue, WA, USA, 28 June–2 July 2011; Volume 11, pp. 3104482–3104584. [Google Scholar]
- Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, É.; Bouchard, G. Complex embeddings for simple link prediction. In Proceedings of the International Conference on Machine Learning, PMLR, New York, NY, USA, 20–22 June 2016; pp. 2071–2080. [Google Scholar]
- Saxena, A.; Kochsiek, A.; Gemulla, R. Sequence-to-sequence knowledge graph completion and question answering. arXiv 2022, arXiv:2203.10321. [Google Scholar]
- Sun, Z.; Deng, Z.H.; Nie, J.Y.; Tang, J. Rotate: Knowledge graph embedding by relational rotation in complex space. arXiv 2019, arXiv:1902.10197. [Google Scholar]
- Omar, R.; Dhall, I.; Kalnis, P.; Mansour, E. A universal question-answering platform for knowledge graphs. Proc. ACM Manag. Data 2023, 1, 1–25. [Google Scholar] [CrossRef]
- Chen, X.; Hu, Z.; Sun, Y. Fuzzy logic based logical query answering on knowledge graphs. In Proceedings of the AAAI Conference on Artificial Intelligence, Virtually, 22 February–1 March 2022; Volume 36, pp. 3939–3948. [Google Scholar]
- Gao, J.; Yu, H.; Zhang, S. Joint event causality extraction using dual-channel enhanced neural network. Knowl.-Based Syst. 2022, 258, 109935. [Google Scholar] [CrossRef]
- Yang, B.; Yih, W.t.; He, X.; Gao, J.; Deng, L. Embedding entities and relations for learning and inference in knowledge bases. arXiv 2014, arXiv:1412.6575. [Google Scholar]
- Dettmers, T.; Minervini, P.; Stenetorp, P.; Riedel, S. Convolutional 2d knowledge graph embeddings. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32. [Google Scholar]
- Zhang, J.; Zhang, X.; Yu, J.; Tang, J.; Tang, J.; Li, C.; Chen, H. Subgraph retrieval enhanced model for multi-hop knowledge base question answering. arXiv 2022, arXiv:2202.13296. [Google Scholar]
- Das, R.; Godbole, A.; Naik, A.; Tower, E.; Zaheer, M.; Hajishirzi, H.; Jia, R.; McCallum, A. Knowledge base question answering by case-based reasoning over subgraphs. In Proceedings of the International Conference on Machine Learning. PMLR, Baltimore, MD, USA, 17–23 July 2022; pp. 4777–4793. [Google Scholar]
- Sukhbaatar, S.; Szlam, A.; Weston, J.; Fergus, R. End-to-end memory networks. Adv. Neural Inf. Process. Syst. 2015, 2015, 2440–2448. [Google Scholar]
- Hao, Y.; Zhang, Y.; Liu, K.; He, S.; Liu, Z.; Wu, H.; Zhao, J. An end-to-end model for question answering over knowledge base with cross-attention combining global knowledge. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, QC, Canada, 30 July–4 August 2017; Volume 1, pp. 221–231. [Google Scholar]
- Chen, Z.Y.; Chang, C.H.; Chen, Y.P.; Nayak, J.; Ku, L.W. UHop: An unrestricted-hop relation extraction framework for knowledge-based question answering. arXiv 2019, arXiv:1904.01246. [Google Scholar]
- Shen, T.; Geng, X.; Qin, T.; Guo, D.; Tang, D.; Duan, N.; Long, G.; Jiang, D. Multi-task learning for conversational question answering over a large-scale knowledge base. arXiv 2019, arXiv:1910.05069. [Google Scholar]
- Lofgren, P. Efficient Algorithms for Personalized Pagerank; Stanford University: Stanford, CA, USA, 2015. [Google Scholar]
- Qiu, Y.; Zhang, K.; Wang, Y.; Jin, X.; Bai, L.; Guan, S.; Cheng, X. Hierarchical query graph generation for complex question answering over knowledge graph. In Proceedings of the 29th ACM International Conference on Information Knowledge Management, Virtual Event, 19–23 October 2020; pp. 1285–1294. [Google Scholar]
- Chen, Y.; Wu, L.; Zaki, M.J. Toward Subgraph-Guided Knowledge Graph Question Generation With Graph Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2023, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bommasani, R.; Hudson, D.A.; Adeli, E.; Altman, R.; Arora, S.; von Arx, S.; Bernstein, M.S.; Bohg, J.; Bosselut, A.; Brunskill, E.; et al. On the opportunities and risks of foundation models. arXiv 2021, arXiv:2108.07258. [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy, O.; Lewis, M.; Zettlemoyer, L.; Stoyanov, V. Roberta: A robustly optimized bert pretraining approach. arXiv 2019, arXiv:1907.11692. [Google Scholar]
- Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.D.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 2020, 33, 1877–1901. [Google Scholar]
- Do, P.; Phan, T.H. Developing a BERT based triple classification model using knowledge graph embedding for question answering system. Appl. Intell. 2022, 52, 636–651. [Google Scholar] [CrossRef]
- Sun, Y.; Shi, Q.; Qi, L.; Zhang, Y. JointLK: Joint reasoning with language models and knowledge graphs for commonsense question answering. arXiv 2021, arXiv:2112.02732. [Google Scholar]
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903. [Google Scholar]
- Wang, Y.; Zhang, H.; Liang, J.; Li, R. Dynamic Heterogeneous-Graph Reasoning with Language Models and Knowledge Representation Learning for Commonsense Question Answering. In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics, Toronto, ON, Canada, 9–14 July 2023; Volume 1, pp. 14048–14063. [Google Scholar]
- Zhang, Q.; Chen, S.; Fang, M.; Chen, X. Joint reasoning with knowledge subgraphs for Multiple Choice Question Answering. Inf. Process. Manag. 2023, 60, 103297. [Google Scholar] [CrossRef]
- Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 2020, 21, 5485–5551. [Google Scholar]
- Lepikhin, D.; Lee, H.; Xu, Y.; Chen, D.; Firat, O.; Huang, Y.; Krikun, M.; Shazeer, N.; Chen, Z. Gshard: Scaling giant models with conditional computation and automatic sharding. arXiv 2020, arXiv:2006.16668. [Google Scholar]
- Jiao, S.; Zhu, Z.; Wu, W.; Zuo, Z.; Qi, J.; Wang, W.; Zhang, G.; Liu, P. An improving reasoning network for complex question answering over temporal knowledge graphs. Appl. Intell. 2023, 53, 8195–8208. [Google Scholar] [CrossRef]
- Yasunaga, M.; Ren, H.; Bosselut, A.; Liang, P.; Leskovec, J. QA-GNN: Reasoning with language models and knowledge graphs for question answering. arXiv 2021, arXiv:2104.06378. [Google Scholar]
- Yasunaga, M.; Bosselut, A.; Ren, H.; Zhang, X.; Manning, C.D.; Liang, P.S.; Leskovec, J. Deep bidirectional language-knowledge graph pretraining. Adv. Neural Inf. Process. Syst. 2022, 35, 37309–37323. [Google Scholar]
- Tan, Y.; Chen, Y.; Qi, G.; Li, W.; Wang, M. MLPQ: A Dataset for Path Question Answering over Multilingual Knowledge Graphs. Big Data Res. 2023, 32, 100381. [Google Scholar] [CrossRef]
- Gu, Y.; Kase, S.; Vanni, M.; Sadler, B.; Liang, P.; Yan, X.; Su, Y. Beyond IID: Three levels of generalization for question answering on knowledge bases. In Proceedings of the Web Conference 2021, Ljubljana, Slovenia, 19–23 April 2021; pp. 3477–3488. [Google Scholar]
- Cao, S.; Shi, J.; Pan, L.; Nie, L.; Xiang, Y.; Hou, L.; Li, J.; He, B.; Zhang, H. KQA pro: A dataset with explicit compositional programs for complex question answering over knowledge base. arXiv 2020, arXiv:2007.03875. [Google Scholar]
- Trivedi, P.; Maheshwari, G.; Dubey, M.; Lehmann, J. Lc-quad: A corpus for complex question answering over knowledge graphs. In Proceedings of the Semantic Web–ISWC 2017: 16th International Semantic Web Conference, Vienna, Austria, 21–25 October 2017; Proceedings, Part II 16. Springer: Berlin/Heidelberg, Germany, 2017; pp. 210–218. [Google Scholar]
- Dubey, M.; Banerjee, D.; Abdelkawi, A.; Lehmann, J. Lc-quad 2.0: A large dataset for complex question answering over wikidata and dbpedia. In Proceedings of the Semantic Web–ISWC 2019: 18th International Semantic Web Conference, Auckland, New Zealand, 26–30 October 2019; Proceedings, Part II 18. Springer: Berlin/Heidelberg, Germany, 2019; pp. 69–78. [Google Scholar]
- Bao, J.; Duan, N.; Yan, Z.; Zhou, M.; Zhao, T. Constraint-based question answering with knowledge graph. In Proceedings of the COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, Osaka, Japan, 11–16 December 2016; pp. 2503–2514. [Google Scholar]
- Ye, X.; Yavuz, S.; Hashimoto, K.; Zhou, Y.; Xiong, C. RNG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base Question Answering. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics, Dublin, Ireland, 22–27 May 2022; Volume 1, pp. 6032–6043. [Google Scholar]
- Sun, Y.; Zhang, Y.; Qi, L.; Shi, Q. TSGP: Two-Stage Generative Prompting for Unsupervised Commonsense Question Answering. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2022, Abu Dhabi, United Arab Emirates, 7–11 December 2022; pp. 968–980. [Google Scholar]
- Madani, N.; Joseph, K. Answering Questions Over Knowledge Graphs Using Logic Programming Along with Language Models. arXiv 2023, arXiv:2303.02206. [Google Scholar]
- Tian, S.; Li, W.; Ning, X.; Ran, H.; Qin, H.; Tiwari, P. Continuous transfer of neural network representational similarity for incremental learning. Neurocomputing 2023, 545, 126300. [Google Scholar] [CrossRef]
- Ran, H.; Ning, X.; Li, W.; Hao, M.; Tiwari, P. 3D human pose and shape estimation via de-occlusion multi-task learning. Neurocomputing 2023, 548, 126284. [Google Scholar] [CrossRef]
- Ning, X.; Yu, Z.; Li, L.; Li, W.; Tiwari, P. DILF: Differentiable rendering-based multi-view Image-Language Fusion for zero-shot 3D shape understanding. Inf. Fusion 2023, 102, 102033. [Google Scholar] [CrossRef]
Notation | Description |
---|---|
Embedding vector of subject entity, relation, and object entity | |
Entity set and relation set | |
(Subject entity, relation, and object entity) | |
N | Number of entities |
d | Dimensionality of embeddings |
The matrix of relation | |
Two-dimensional vectors of subject entity and relation | |
w | Kernel |
Categories | KGE Model | Score Function | Memory Complexity |
---|---|---|---|
Distanced-based | TransE [26] | ||
RotatE [30] | |||
Tensor-decompositional-based | ComplEx [28] | ||
RESCAL [27] | |||
DistMult [34] | |||
Convolutional-based | ConvE [35] |
Model | Year | Strategy |
---|---|---|
HQGC [43] | 2020 | Based the director–actor–critic framework on hierarchical reinforcement learning with intrinsic motivation |
CBR-SUBG [37] | 2022 | Dynamically retrieves similar queries and subgraphs; adaptive subgraph collection strategy |
SR [36] | 2022 | Trainable subgraph retriever implemented via a dual encoder |
Graph2seq [44] | 2023 | Utilized a bidirectional Graph2Seq model to encode the KG subgraph |
Model | Year | Strategy |
---|---|---|
Qagnn [57] | 2020 | Connect question and KG to form a joint graph. |
JointLK [50] | 2022 | A dense bidirectional attention module. |
GreaseLM [58] | 2022 | Designed a special interaction token and passed through N LM-based unimodal encoding layers. |
DHLK [52] | 2023 | Proposed a dynamic heterogeneous graph with LMs and KG; relation mask self-attention. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Li, W.; Dai, G.; Shang, X. Advancements in Complex Knowledge Graph Question Answering: A Survey. Electronics 2023, 12, 4395. https://doi.org/10.3390/electronics12214395
Song Y, Li W, Dai G, Shang X. Advancements in Complex Knowledge Graph Question Answering: A Survey. Electronics. 2023; 12(21):4395. https://doi.org/10.3390/electronics12214395
Chicago/Turabian StyleSong, Yiqing, Wenfa Li, Guiren Dai, and Xinna Shang. 2023. "Advancements in Complex Knowledge Graph Question Answering: A Survey" Electronics 12, no. 21: 4395. https://doi.org/10.3390/electronics12214395
APA StyleSong, Y., Li, W., Dai, G., & Shang, X. (2023). Advancements in Complex Knowledge Graph Question Answering: A Survey. Electronics, 12(21), 4395. https://doi.org/10.3390/electronics12214395