Polarization Direction of Arrival Estimation for Vector Array of Unmanned Aerial Vehicle Swarm
Abstract
:1. Introduction
- In order to accurately estimate the array position during the flight of the UAVs, the orthogonality of the eigenvalues and eigenvectors is used to construct a termination matrix for the UAV’s position coordinates. Then, the exact self-positioning coordinates of UAVs are obtained by solving the optimal solution of the semi-positive definite programming (SDP) problem with the constrained global least square method. This provides a guarantee for the subsequent implementation of accurate DOA estimation.
- By using the 2D joint sparsity signals of the incident, A 2D sparse received signal model based on the vector array of the UAV swarm is constructed. Then, the SBL algorithm is utilized to obtain the maximum posterior probability density of the target parameters. After iterative convergence, the DOA estimate of the target is obtained from the maximum value of the power spectrum.
- Additionally, the polarization parameter is solved by building an objective function for polarization parameter estimation based on the estimated DOA parameter. To avoid 2D spectrum peak searching, the minimum eigenvector method (MEM) is adopted to realize the polarization parameter estimation.
- The simulation results demonstrate the superior performance of the proposed algorithm. The algorithm can solve the problem of accurate self-positioning of UAVs and provide high-precision polarization-DOA estimation jointly under low signal-to-noise ratio (SNR) and small snapshot conditions.
2. System Model
3. The Novel U-SBL Algorithm
3.1. High-Precision Self-Positioning Algorithm
3.2. The Polarization-DOA Estimation Algorithm
Algorithm 1: U-SBL Algorithm Steps |
Input: Array receives data , Maximum diameter of the UAV area , Threshold and , Iterations , Grid point set ; |
1 According to Formulas (16) and (17) obtain and ; 2 Self-positioning coordinates are obtained according to Formula (18); 3 After the sparse signal model is obtained from Formula (19), The posterior probability density function is obtained according to Equation (22); 4 The iteration begins, updated and according to Equations (23) and (24); 5 Update the hyperparameters according to Equation (27); 6 If and , it will return to step 4; 7 The end of the iteration. Output the DOA estimation results and ; 8 The polarization parameter estimation result and are calculated from Equations (31) and (32); Output: Parameters of all incident signals |
4. Cramer–Rao Bound
5. The Computational Cost Analysis
6. Simulation Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Notations
Notations | Definitions |
lowercase bold italic letters | vectors |
capital bold italic letters | matrices |
inverse operation | |
transpose operation | |
conjugate-transpose operation | |
diagonalization operation | |
extract the phase angle | |
trace of the matrix | |
Hadamard product | |
Khatri-Rao product | |
Kronecker product | |
complex matrix set | |
the nearest integer to | |
2-norm | |
The minimum eigenvector of a matrix |
References
- Zeng, Y.; Zhang, R.; Lim, T.J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Commun. Mag. 2016, 54, 36–42. [Google Scholar] [CrossRef]
- Gupta, L.; Jain, R.; Vaszkun, G. Survey of important issues in UAV communication networks. IEEE Commun. Surv. Tutor. 2015, 18, 1123–1152. [Google Scholar]
- Jiang, H.; Zhang, Z.C.; Gui, G. Three-dimensional non-stationary wideband geometry-based UAV channel model for A2G communication environments. IEEE Access 2019, 7, 26116–26122. [Google Scholar] [CrossRef]
- Wang, X.R.; Zhai, W.; Zhang, X.; Wang, X.H.; Amin, M.G. Enhanced Automotive Sensing Assisted by Joint Communication and Cognitive Sparse MIMO Radar. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 4782–4799. [Google Scholar]
- Huang, H.; Liu, Q.; So, H.C. Low-Rank and Row-Sparse Decomposition for Joint DOA Estimation and Distorted Sensor Detection. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 4763–4773. [Google Scholar]
- Xiao, Z.Y.; Xia, P.F.; Xia, X.G. Enabling UAV cellular with millimeter wave communication: Potentials and approaches. IEEE Commun. Mag. 2016, 54, 66–73. [Google Scholar] [CrossRef]
- Lin, X.P.; Zhang, X.F.; He, L. Multiple emitters localization by UAV with nested linear array: System scheme and 2D-DOA estimation algorithm. China Commun. 2020, 17, 117–130. [Google Scholar]
- Shi, B.; Ma, X.; Zhang, W. Complex-valued convolutional neural networks design and its application on UAV DOA estimation in urban environments. J. Commun. Inf. Netw. 2020, 5, 130–137. [Google Scholar] [CrossRef]
- Wang, L.; Huang, Y. UAV-Based Estimation of Direction of Arrival: An Approach Based on Image Processing. In Proceedings of the 2020 International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, 21–23 October 2020; pp. 1165–1169. [Google Scholar]
- Yang, T.Y.; Maio, A.D.; Zheng, J.B. An adaptive DOA estimation strategy for UAVs detection. In Proceedings of the 2021 CIE International Conference on Radar (Radar), Haikou, China, 15–19 December 2021. [Google Scholar] [CrossRef]
- Murata, S.; Matsuda, T.; Nishimori, K.; Mitsui, T. Performance Evaluation of Wave Source Localization Method Using UAVs Based on the Maximum Likelihood Estimation. In Proceedings of the 2020 International Symposium on Antennas and Propagation (ISAP), Osaka, Japan, 25–28 January 2021; pp. 135–136. [Google Scholar]
- Marzetta, T.L. Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Trans. Wirel. Commun. 2010, 9, 3590–3600. [Google Scholar] [CrossRef]
- Boccardi, F.; Heath, R.W.; Lozano, A. Five disruptive technology directions for 5G. IEEE Commun. Mag. 2014, 52, 74–80. [Google Scholar]
- Chen, Y.W.; Jie, Q.J.; Zhang, Y.Q.; Shu, F.; Zhan, X.C.; Yan, S.H.; Cai, W.L. Two Rapid Power Iterative DOA Estimators for UAV Emitter Using Massive/Ultra-Massive Receive Array. Drones 2023, 7, 361. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, W.; Hong, X.; Wang, Y. A Beamspace Multi-sources DOA Estimation Method for UAV Cluster Systems. In Proceedings of the 2022 16th IEEE International Conference on Signal Processing (ICSP), Beijing, China, 21–24 October 2022; pp. 27–31. [Google Scholar]
- Zhu, B.; Hayashi, K.; Li, B.; Li, J.; Zhang, X. A Frequency Domain Direction of Arrival Estimation Algorithm for UAV Remote-control Signal. In Proceedings of the 2021 13th International Conference on Wireless Communications and Signal Processing (WCSP), Changsha, China, 20–22 October 2021; pp. 1–5. [Google Scholar]
- Kim, J. Performance analysis of DOA estimation in the presence of mutual coupling for UAV. In Proceedings of the 2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC), Beijing, China, 23–25 September 2016; pp. 254–256. [Google Scholar]
- Nehorai, A.; Paldi, E. Vector-sensor array processing for electromagnetic source localization. IEEE Trans. Signal Process. 1994, 42, 376–398. [Google Scholar] [CrossRef]
- Donelli, M.; Viani, F.; Rocca, P. An innovative multiresolution approach for DOA estimation based on a support vector classification. IEEE Trans. Antennas Propag. 2009, 57, 2279–2292. [Google Scholar] [CrossRef]
- Wen, F.Q.; Gui, G.; Gacanin, H. Compressive sampling framework for 2D-DOA and polarization estimation in mmWave polarized massive MIMO systems. IEEE Trans. Wirel. Commun. 2023, 22, 3071–3083. [Google Scholar] [CrossRef]
- Bohra, P.; Unser, M. Continuous-Domain Signal Reconstruction Using Lp-Norm Regularization. IEEE Trans. Signal Process. 2020, 68, 4543–4554. [Google Scholar]
- Zuo, M.; Xie, S.; Zhang, X.; Yang, M. DOA estimation based on weighted l1-norm sparse representation for low SNR scenarios. Sensors 2021, 21, 4614. [Google Scholar] [CrossRef]
- Wu, X.; Zhu, W.P.; Yan, J. A High-Resolution DOA Estimation Method With a Family of Nonconvex Penalties. IEEE Trans. Veh. Technol. 2018, 67, 4925–4938. [Google Scholar] [CrossRef]
- Yin, J.; Chen, T. Direction-of-arrival estimation using a sparse representation of array covariance vectors. IEEE Trans. Signal Process. 2011, 59, 4489–4493. [Google Scholar] [CrossRef]
- Bai, H.; Darte, M.F.; Janaswamy, R. Direction of arrival estimation for complex sources through ℓ1-norm sparse Bayesian learning. IEEE Signal Process. Lett. 2019, 26, 765–769. [Google Scholar] [CrossRef]
- Leite, W.S.; de Lamare, R.C. List-based OMP and an enhanced model for DOA estimation with nonuniform arrays. IEEE Trans. Aerosp. Electron. Syst. 2021, 57, 4457–4464. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Yuan, Y.; Jiang, T. Low-Complexity DOA Estimation via OMP and Majorization-Minimization. In Proceedings of the 2018 IEEE Asia-Pacific Conference on Antennas and Propagation (APCAP), Auckland, New Zealand, 5–8 August 2018; pp. 18–19. [Google Scholar]
- Fu, M.; Zheng, Z.; Wang, W. 2-D DOA estimation for nested conformal arrays via sparse reconstruction. IEEE Commun. Lett. 2020, 25, 980–984. [Google Scholar] [CrossRef]
- Uemura, S.; Nishimori, K.; Taniguchi, R.; Inomata, M.; Kitao, K.; Imai, T.; Suyama, S.; Ishikawa, H.; Oda, Y. Direction-of-arrival estimation with circular array using compressed sensing in 20 GHz band. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 703–707. [Google Scholar] [CrossRef]
- Chen, P.; Cao, Z.; Chen, Z.; Wang, X. Off-grid DOA estimation using sparse Bayesian learning in MIMO radar with unknown mutual coupling. IEEE Trans. Signal Process. 2018, 67, 208–220. [Google Scholar] [CrossRef]
- Yang, Z.; Xie, L.; Zhang, C. Off-grid direction of arrival estimation using sparse Bayesian inference. IEEE Trans. Signal Process. 2012, 61, 38–43. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, H. DOA, power and polarization angle estimation using sparse signal reconstruction with a COLD array. AEU-Int. J. Electron. Commun. 2015, 69, 1606–1612. [Google Scholar] [CrossRef]
- Liu, Z. DOA and polarization estimation via signal reconstruction with linear polarization-sensitive arrays. Chin. J. Aeronaut. 2015, 28, 1718–1724. [Google Scholar] [CrossRef]
- Zhao, P.; Hu, G.; Zhou, H. An Off-grid block-sparse Bayesian method for direction of arrival and polarization estimation. Circuits Syst. Signal Process. 2020, 39, 4378–4398. [Google Scholar] [CrossRef]
- Li, B.; Bai, W.; Zheng, G.; He, X.; Xue, B.; Zhang, M. BSBL-based DOA and polarization estimation with linear spatially separated polarization sensitive array. Wirel. Pers. Commun. 2019, 109, 2051–2065. [Google Scholar] [CrossRef]
- Parkinson, B.; Spilker, J. Global Positioning System: Theory Application; American Institute of Astronautics and Aeronautics: Reston, VA, USA, 1996. [Google Scholar]
- Drawil, N.M.; Amar, H.M.; Basir, O.A. GPS localization accuracy classification: A context-based approach. IEEE Trans. Intell. Transp. Syst. 2012, 14, 262–273. [Google Scholar] [CrossRef]
- Wen, F.Q.; Shi, J.P.; Gui, G. 3-D positioning method for anonymous UAV based on bistatic polarized MIMO radar. IEEE Internet Things J. 2023, 10, 815–827. [Google Scholar] [CrossRef]
- Fan, D.; Gao, F.F.; Ai, B. Channel estimation and self-positioning for UAV swarm. IEEE Trans. Commun. 2019, 67, 7994–8007. [Google Scholar] [CrossRef]
- Freddy, Y.P.; Feng; Rihan, M.; Huang, L. Positional Perturbations Analysis for Micro-UAV Array With Relative Position-Based Formation. IEEE Commun. Lett. 2021, 25, 2918–2922. [Google Scholar]
- See, C.M.S.; Gershman, A.B. Direction-of-arrival estimation in partly calibrated subarray-based sensor arrays. IEEE Trans. Signal Process. 2004, 52, 329–338. [Google Scholar] [CrossRef]
- Hua, Y.B. A pencil-MUSIC algorithm for finding two-dimensional angles and polarizations using crossed dipoles. IEEE Trans. Antennas Propag. 1993, 41, 370–376. [Google Scholar] [CrossRef]
- Elbir, A.M.; Chatzinotas, S. BSA-OMP: Beam-Split-Aware Orthogonal Matching Pursuit for THz Channel Estimation. IEEE Wirel. Commun. Lett. 2023, 12, 738–742. [Google Scholar] [CrossRef]
Algorithm | Complexity |
---|---|
MUSIC | |
RARE | |
OMP | |
U-SBL |
Description | Parameter | Value |
---|---|---|
Signal frequency | 1 GHz | |
Signal wavelength | 0.3 m | |
Array element spacing in UAV | 0.15 m | |
Threshold | 0.2 | |
Number of snapshots | 100 | |
Maximum diameter of UAV swarm | 10 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, X.; Wang, K.; Dong, M.; Wang, E.; Tian, Y. Polarization Direction of Arrival Estimation for Vector Array of Unmanned Aerial Vehicle Swarm. Electronics 2023, 12, 4612. https://doi.org/10.3390/electronics12224612
Lan X, Wang K, Dong M, Wang E, Tian Y. Polarization Direction of Arrival Estimation for Vector Array of Unmanned Aerial Vehicle Swarm. Electronics. 2023; 12(22):4612. https://doi.org/10.3390/electronics12224612
Chicago/Turabian StyleLan, Xiaoyu, Kunming Wang, Ming Dong, Ershen Wang, and Ye Tian. 2023. "Polarization Direction of Arrival Estimation for Vector Array of Unmanned Aerial Vehicle Swarm" Electronics 12, no. 22: 4612. https://doi.org/10.3390/electronics12224612
APA StyleLan, X., Wang, K., Dong, M., Wang, E., & Tian, Y. (2023). Polarization Direction of Arrival Estimation for Vector Array of Unmanned Aerial Vehicle Swarm. Electronics, 12(22), 4612. https://doi.org/10.3390/electronics12224612