Predicting Dropout in Programming MOOCs through Demographic Insights
Abstract
:1. Introduction
1.1. Motivation
1.2. Problem Setting
1.3. Approach
1.4. Contributions
2. Materials and Methods
2.1. Data Sources
- Encouragement to learn (detailed introduction—indicated by 100% of Wong’s respondents).
- Engagement (availability of multimedia—97% indications).
- Online interaction (discussion forum—100% indications).
- Consolidation of knowledge (automatically graded tests—81% indications).
2.2. Course Participants
2.3. Research Procedure
3. Results
3.1. Zero-Time Prediction of Python MOOC Dropouts
3.2. Zero-Time Prediction of JavaScript MOOC Drop-Outs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission. Report on Web Skills Survey: Support Services to Foster Web Talent in Europe by Encouraging the Use of MOOCs Focused on Web Talent—First Interim Report. Available online: https://silo.tips/download/report-on-web-skills-survey (accessed on 15 October 2023).
- Xie, X.; Siau, K.; Nah, F.F.-H. COVID-19 pandemic—Online education in the new normal and the next normal. J. Inf. Technol. Case Appl. Res. 2020, 22, 175–187. [Google Scholar] [CrossRef]
- Feng, W.; Tang, J.; Liu, T.X. Understanding dropouts in MOOCs. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Association for the Advancement of Artificial Intelligence: Palo Alto, CA, USA, 2019; pp. 517–524. [Google Scholar]
- Shah, D. The Second Year of the MOOC: 2020 Saw a Rush to Large-Scale Online Courses. Available online: https://www.edsurge.com/news/2020-12-23-the-second-year-of-the-mooc-2020-saw-a-rush-to-large-scale-online-courses (accessed on 15 October 2023).
- Wang, M.; Li, G. A Meta-Analysis of MOOC-Based Academic Achievement, Engagement, Motivation, and Self-Regulation During the COVID-19 Pandemic. Int. J. e-Collab. 2022, 18, 1–17. [Google Scholar] [CrossRef]
- Rõõm, M.; Lepp, M.; Luik, P. Dropout Time and Learners’ Performance in Computer Programming MOOCs. Educ. Sci. 2021, 11, 643. [Google Scholar] [CrossRef]
- Eriksson, T.; Adawi, T.; Stöhr, C. “Time is the bottleneck”: A qualitative study exploring why learners drop out of MOOCs. J. Comput. High. Educ. 2017, 29, 133–146. [Google Scholar] [CrossRef]
- de Freitas, S.I.; Morgan, J.; Gibson, D. Will MOOCs transform learning and teaching in higher education? Engagement and course retention in online learning provision. Br. J. Educ. Technol. 2015, 46, 455–471. [Google Scholar] [CrossRef]
- Perna, L.W.; Ruby, A.; Boruch, R.F.; Wang, N.; Scull, J.; Ahmad, S.; Evans, C. Moving Through MOOCs: Understanding the Progression of Users in Massive Open Online Courses. Educ. Res. 2014, 43, 421–432. [Google Scholar] [CrossRef]
- Goopio, J.; Cheung, C. The MOOC dropout phenomenon and retention strategies. J. Teach. Travel Tour. 2021, 21, 177–197. [Google Scholar] [CrossRef]
- Şahin, M. A comparative analysis of dropout prediction in massive open online courses. Arab. J. Sci. Eng. 2021, 46, 1845–1861. [Google Scholar] [CrossRef]
- Drousiotis, E.; Pentaliotis, P.; Shi, L.; Cristea, A.I. Capturing fairness and uncertainty in student dropout prediction—A comparison study. In Proceedings of the International Conference on Artificial Intelligence in Education, Utrecht, The Netherlands, 14–18 June 2021; Springer: Cham, Switzerland, 2021; pp. 139–144. [Google Scholar]
- Fu, Q.; Gao, Z.; Zhou, J.; Zheng, Y. CLSA: A novel deep learning model for MOOC dropout prediction. Comput. Electr. Eng. 2021, 94, 107315. [Google Scholar] [CrossRef]
- Mubarak, A.A.; Cao, H.; Hezam, I.M. Deep analytic model for student dropout prediction in massive open online courses. Comput. Electr. Eng. 2021, 93, 107271. [Google Scholar] [CrossRef]
- Whitehill, J.; Mohan, K.; Seaton, D.T.; Rosen, Y.; Tingley, D. Delving Deeper into MOOC Student Dropout Prediction. arXiv 2017, arXiv:1702.06404. [Google Scholar]
- Bukralia, R. Predicting dropout in online courses: Comparison of classification techniques. In Proceedings of the Fifth Midwest Association for Information Systems Conference, Moorhead, MN, USA, 21–22 May 2010. [Google Scholar]
- Lee, Y.; Choi, J. A review of online course dropout research: Implications for practice and future research. Educ. Technol. Res. Dev. 2011, 59, 593–618. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, M.; Zhang, J. The learning behaviours of dropouts in MOOCs: A collective attention network perspective. Comput. Educ. 2021, 167, 104189. [Google Scholar] [CrossRef]
- Balakrishnan, G.; Coetzee, D. Predicting Student Retention in Massive Open Online Courses Using Hidden Markov Models. Available online: https://bid.berkeley.edu/cs294-1-spring13/images/7/7b/Balakrishnan%2C_Coetzee_-_Predicting_Student_Retention_in_Massive_Open_Online_Courses_using_Hidden_Markov_Models_-_CS294-1_project_report.pdf (accessed on 15 October 2023).
- Kloft, M.; Stiehler, F.; Zheng, Z.; Pinkwart, N. Predicting MOOC dropout over weeks using machine learning methods. In Proceedings of the EMNLP 2014 Workshop on Analysis of Large Scale Social Interaction in MOOCs, Doha, Qatar, 25–29 October 2014; pp. 60–65. [Google Scholar]
- Gregori, E.B.; Zhang, J.; Galván-Fernández, C.; de Asís Fernández-Navarro, F. Learner support in MOOCs: Identifying variables linked to completion. Comput. Educ. 2018, 122, 153–168. [Google Scholar] [CrossRef]
- Jedel, I.A.V.; Palmquist, A.; Munkvold, R.I.; Goethe, O.; Jonasdottir, H.; Olsson, E.M. An industry experiment of academic performance and drop-out in gamified distance education. In Proceedings of the 5th International GamiFIN Conference 2021 (GamiFIN 2021), Levi, Finland, 7–9 April 2021. [Google Scholar]
- Cristea, A.I.; Alamri, A.; Kayama, M.; Stewart, C.; Alsheri, M.; Shi, L. Earliest predictor of dropout in MOOCs: A longitudinal study of FutureLearn courses. In Proceedings of the 27th International Conference on Information Systems Development, Lund, Sweden, 22–24 August 2018. [Google Scholar]
- Jordan, K. Massive open online course completion rates revisited: Assessment, length and attrition. Int. Rev. Res. Open Distrib. Learn. 2015, 16, 341–358. [Google Scholar] [CrossRef]
- Rosé, C.P.; Carlson, R.; Yang, D.; Wen, M.; Resnick, L.; Goldman, P.; Sherer, J. Social factors that contribute to attrition in MOOCs. In Proceedings of the First ACM Conference on Learning @ Scale, Atlanta, GA, USA, 4–5 March 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 197–198. [Google Scholar]
- Riofrío Calderón, G.; Ramírez Montoya, M.S.; Rodríguez Conde, M.J. Data analytics to predict dropout in a MOOC course on energy sustainability. In Proceedings of the 9th International Conference on Technological Ecosystems for Enhancing Multiculturality (TEEM 2021), Barcelona, Spain, 27–29 October 2021. [Google Scholar]
- Panagiotakopoulos, T.; Kotsiantis, S.; Kostopoulos, G.; Iatrellis, O.; Kameas, A. Early dropout prediction in MOOCs through supervised learning and hyperparameter optimization. Electronics 2021, 10, 1701. [Google Scholar] [CrossRef]
- Radovanović, S.; Delibašić, B.; Suknović, M. Predicting dropout in online learning environments. Comput. Sci. Inf. Syst. 2021, 18, 957–978. [Google Scholar] [CrossRef]
- Niemi, D.; Gitin, E. Using Big Data to Predict Student Dropouts: Technology Affordances for Research. In Proceedings of the International Conference on Cognition and Exploratory Learning in Digital Age (CELDA 2012), Madrid, Spain, 19–21 October 2012. [Google Scholar]
- Adnan, M.; Habib, A.; Ashraf, J.; Mussadiq, S.; Raza, A.A.; Abid, M.; Bashir, M.; Khan, S.U. Predicting at-risk students at different percentages of course length for early intervention using machine learning models. IEEE Access 2021, 9, 7519–7539. [Google Scholar] [CrossRef]
- Basnet, R.B.; Johnson, C.; Doleck, T. Dropout prediction in Moocs using deep learning and machine learning. Educ. Inf. Technol. 2022, 27, 11499–11513. [Google Scholar] [CrossRef]
- Jha, N.I.; Ghergulescu, I.; Moldovan, A.N. OULAD MOOC Dropout and Result Prediction using Ensemble, Deep Learning and Regression Techniques. In Proceedings of the 11th International Conference on Computer Supported Education (CSEDU 2019), Heraklion, Greece, 2–4 May 2019; Scitepress: Setubal, Portugal, 2019; Volume 2, pp. 154–164. [Google Scholar]
- Al-Shabandar, R.; Hussain, A.J.; Liatsis, P.; Keight, R. Detecting at-risk students with early interventions using machine learning techniques. IEEE Access 2019, 7, 149464–149478. [Google Scholar] [CrossRef]
- Al-Shabandar, R.; Hussain, A.; Laws, A.; Keight, R.; Lunn, J.; Radi, N. Machine learning approaches to predict learning outcomes in Massive open online courses. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 713–720. [Google Scholar]
- Kabathova, J.; Drlik, M. Towards predicting student’s dropout in university courses using different machine learning techniques. Appl. Sci. 2021, 11, 3130. [Google Scholar] [CrossRef]
- Hone, K.S.; El Said, G.R. Exploring the factors affecting MOOC retention: A survey study. Comput. Educ. 2016, 98, 157–168. [Google Scholar] [CrossRef]
- Kizilcec, R.F.; Halawa, S. Attrition and achievement gaps in online learning. In Proceedings of the Second (2015) ACM Conference on Learning @ Scale (L@S ’15), Vancouver, BC, Canada, 14–18 March 2015; Association for Computing Machinery: New York, NY, USA, 2015; pp. 57–66. [Google Scholar]
- Psathas, G.; Chatzidaki, T.K.; Demetriadis, S.N. Predictive Modeling of Student Dropout in MOOCs and Self-Regulated Learning. Computers 2023, 12, 194. [Google Scholar] [CrossRef]
- Alhothali, A.; Albsisi, M.; Assalahi, H.; Aldosemani, T. Predicting student outcomes in online courses using machine learning techniques: A review. Sustainability 2022, 14, 6199. [Google Scholar] [CrossRef]
- Pierrakeas, C.; Xeno, M.; Panagiotakopoulos, C.; Vergidis, D. A comparative study of dropout rates and causes for two different distance education courses. Int. Rev. Res. Open Distrib. Learn. 2004, 5, 183. [Google Scholar] [CrossRef]
- Packham, G.; Jones, P.; Miller, C.; Thomas, B. E-learning and retention: Key factors influencing student withdrawal. Educ. Train. 2004, 46, 335–342. [Google Scholar] [CrossRef]
- Tello, S.F. An analysis of student persistence in online education. In Information Communication Technologies: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2008; pp. 1163–1178. [Google Scholar]
- Levy, Y. Comparing dropouts and persistence in e-learning courses. Comput. Educ. 2007, 48, 185–204. [Google Scholar] [CrossRef]
- Willging, P.A.; Johnson, S.D. Factors that influence students’ decision to dropout of online courses. J. Asynchronous Learn. Netw. 2009, 13, 115–127. [Google Scholar]
- Morris, N.P.; Swinnerton, B.; Hotchkiss, S. Can demographic information predict MOOC learner outcomes? In Experience Track, Proceedings of the European MOOC Stakeholder Summit 2015, Mons, Belgium, 18–20 May 2015; Université Catholique de Louvain: Ottignies-Louvain-la-Neuve, Belgium, 2015. [Google Scholar]
- Sherimon, V.; Francis, L.; Pc, S.; Aboraya, W. Exploring the impact of learners’ demographic characteristics on course completion and dropout in massive open online courses. Int. J. Res. Granthaalayah 2022, 10, 149–160. [Google Scholar] [CrossRef]
- Zhang, Q.; Bonafini, F.C.; Lockee, B.B.; Jablokow, K.W.; Hu, X. Exploring demographics and students’ motivation as predictors of completion of a massive open online course. Int. Rev. Res. Open Distrib. Learn. 2019, 20, 140–161. [Google Scholar] [CrossRef]
- Rõõm, M.; Luik, P.; Lepp, M. Learner success and the factors influencing it in computer programming MOOC. Educ. Inf. Technol. 2023, 28, 8645–8663. [Google Scholar] [CrossRef]
- Breslow, L.; Pritchard, D.E.; DeBoer, J.; Stump, G.S.; Ho, A.D.; Seaton, D.T. Studying learning in the worldwide classroom research into edX’s first MOOC. Res. Pract. Assess. 2013, 8, 13–25. [Google Scholar]
- Swacha, J. Teaching Python programming with a MOOC: Course design and evaluation. In Proceedings of the Thirty-Seventh Information Systems Education Conference, Chicago, IL, USA, 9 October 2021; pp. 131–137. [Google Scholar]
- Wong, B.T.-M. Factors leading to effective teaching of MOOCs. Asian Assoc. Open Univ. J. 2016, 11, 105–118. [Google Scholar] [CrossRef]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- He, J.; Bailey, J.; Rubinstein, B.; Zhang, R. Identifying at-risk students in massive open online courses. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, TX, USA, 25–30 January 2015; pp. 1749–1755. [Google Scholar]
- Jiang, S.; Williams, A.; Schenke, K.; Warschauer, M.; O’Dowd, D. Predicting MOOC performance with week 1 behavior. In Proceedings of the 7th International Conference on Educational Data Mining, London, UK, 4–7 July 2014. [Google Scholar]
Source | Sample Size | Gender | Birthdate/Age | Domicile/ Nationality | Employment Status | Education Level | Other Predictors |
---|---|---|---|---|---|---|---|
[16] | 269 | X | X | E1, E2, E3, E5, H2, S2, S3 | |||
[34] | 597,692 * | X | X | X | E3, U1, U3, U5, U8 | ||
[36] | 379 | X | X | X | X | C1, C2, U4 | |
[45] | 2338 | X | X | X | X | X | D9 |
[37] | 67,333 | X | X | X | X | A1, A4, H1, U5, U6, U7 | |
[46] | 79 | X | X | X | D10 | ||
[30] | 32,593 ** | X | X | X | X | B9, D1, D11, E4, U1, U2, U7 | |
[27] | Unspecified | X | X | X | X | X | D2–D8, H1, S1, S2 |
[3] | 668,017 *** | X | X | X | C1, U1, U5, U9, U11 | ||
[47] | 624 | X | X | X | X | X | A3, A4, D6, D9, H3 |
[28] | 32,593 ** | X | X | X | X | D1, D11, E4, U1, U2, U7 | |
[38] | 1069 | X | X | X | X | A4, H1, H4, S4, S5 | |
[48] | 1038 | X | X | X | A3, A4, H1, S4, U11 | ||
[29] | 14,791 | X | X | X | D10, S2, U7, U9, U11 | ||
[49] | 154,763 | X | X | X | D9, U1, U7, U9, U14 |
Lesson No. | Python Course Modules | JavaScript Course Modules |
---|---|---|
1 | First contact with the Python language | Introduction to programming in Javascript |
2 | Character strings | Setting up programming environment |
3 | Programs | The Hello World! Program |
4 | Sequences | Variables |
5 | Loops | Data types |
6 | Sets and dictionaries | Comments |
7 | Functions | Operators |
8 | Object-oriented programming | Interaction with the user and dialog boxes |
9 | Python standard modules—overview | Conditional execution |
10 | Data processing | Loops |
11 | Algorithms in Python | Functions |
12 | Storage of data | Errors and exceptions |
13 | Use of PYPI modules | Testing your code |
14 | Python in practical applications | Cross-sectional task |
Variable | Description | Reference Value (0) |
---|---|---|
Gender | Participant’s gender | Female |
Age | Participant’s age | Younger than 25 years old |
Education | Participant’s higher education | No higher education |
City | Participant’s place of living | City of less than 100,000 inhabitants |
Student | Participant’s ongoing education | Not a student |
Unemployed | Participant’s employment status | Employed |
Foreigner | Participant’s country of origin | Poland |
Disabilities | Participant’s disabilities | None |
Coef | Std Err | z | P >|z| | [0.025 | 0.975] | |
---|---|---|---|---|---|---|
const | −1.3583 | 0.309 | −4.398 | 0.000 | −1.964 | −0.753 |
Gender | 0.4457 | 0.235 | 1.899 | 0.058 | −0.014 | 0.906 |
Age | −0.7256 | 0.256 | −2.833 | 0.005 | −1.228 | −0.224 |
Education | −1.0213 | 0.265 | −3.859 | 0.000 | −1.540 | −0.503 |
City | 0.3790 | 0.216 | 1.759 | 0.079 | −0.043 | 0.801 |
Student | −1.1476 | 0.385 | −2.978 | 0.003 | −1.903 | −0.392 |
Unemployed | 0.1680 | 0.273 | 0.616 | 0.538 | −0.367 | 0.703 |
Foreigner | 0.7724 | 0.347 | 2.226 | 0.026 | 0.092 | 1.453 |
Disabilities | −0.8490 | 0.424 | −2.001 | 0.045 | −1.681 | −0.017 |
Coef | Std Err | z | P >|z| | [0.025 | 0.975] | |
---|---|---|---|---|---|---|
const | −1.9642 | 0.337 | −5.821 | 0.000 | −2.626 | −1.303 |
Gender | 0.2847 | 0.226 | 1.258 | 0.208 | −0.159 | 0.728 |
Age | 0.0417 | 0.251 | 0.166 | 0.868 | −0.449 | 0.533 |
Education | 0.0303 | 0.287 | 0.105 | 0.916 | −0.532 | 0.592 |
City | 0.0455 | 0.220 | 0.206 | 0.837 | −0.386 | 0.477 |
Student | −0.6583 | 0.408 | −1.613 | 0.107 | −1.458 | 0.141 |
Unemployed | −0.1440 | 0.280 | −0.515 | 0.607 | −0.692 | 0.404 |
Foreigner | −1.2818 | 0.668 | −1.919 | 0.055 | −2.591 | 0.027 |
Disabilities | 0.1417 | 0.465 | 0.305 | 0.761 | −0.770 | 1.054 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swacha, J.; Muszyńska, K. Predicting Dropout in Programming MOOCs through Demographic Insights. Electronics 2023, 12, 4674. https://doi.org/10.3390/electronics12224674
Swacha J, Muszyńska K. Predicting Dropout in Programming MOOCs through Demographic Insights. Electronics. 2023; 12(22):4674. https://doi.org/10.3390/electronics12224674
Chicago/Turabian StyleSwacha, Jakub, and Karolina Muszyńska. 2023. "Predicting Dropout in Programming MOOCs through Demographic Insights" Electronics 12, no. 22: 4674. https://doi.org/10.3390/electronics12224674
APA StyleSwacha, J., & Muszyńska, K. (2023). Predicting Dropout in Programming MOOCs through Demographic Insights. Electronics, 12(22), 4674. https://doi.org/10.3390/electronics12224674