Tiny Machine Learning Zoo for Long-Term Compensation of Pressure Sensor Drifts
Abstract
:1. Introduction
2. Pressure Sensor for Vertical Position Localization
3. Case Studies
3.1. The LPS22HH Pressure Sensor
3.2. Case Study A: Soldering Drift
3.3. Case Study B: Normal Usage with Long Exposure to (Moderately) High Temperatures
4. Research Question and Associated Requirements
- The candidate model’s footprint should not exceed 2 MB in order to fit into the embedded memory of a resource-constrained target device, such as a micro-controller or embedded processor, which are typically employed in edge computing architectures.
- The number of parameters of the model should be lower than a half to one million.
- The ratio of training samples to model parameters should not be lower than ten.
- The model should be deployable in a low-power sensor’s built-in ML assets.
- The model has to be accurate. There is no acceptable argument that support the adoption of any processing solution that achieves a signal-to-noise ratio (S/N) below the one that features the sensor data.
- Precisely, the accuracy of the compensation should be within ±50 Pa, as defined by [17]. Since pressure data are coded into 24 bits, the S/N is required to be 144 dB. Hence, any solution should achieve an S/N above this value.
5. Related Works
5.1. Static Calibration
5.2. Dealing with Small Datasets
5.3. Evolutionary Algorithm Approaches
5.4. Temporal Dependence of Sensor Drift
6. Datasets
6.1. Dataset A for Soldering Drift Case Study
- The mean—it represents the instantaneous average or central tendency of the pressure accuracy measurements;
- The maximum—this curve illustrates the highest accuracy pressure value recorded by the sensors at each hour;
- The minimum—this curve shows the lowest pressure accuracy value recorded by the sensors at each hour.
6.2. Dataset B for Normal Usage of Long Exposure to (Moderately) High Temperatures Case Study
- DUT4 and DUT9 formed the first group;
- DUT1, DUT12, and DUT18 formed the second group;
- DUT23 formed the third group.
7. Proposed Machine Learning and Deep Learning Model Zoo
7.1. Design Approach for the Model Zoo: Topology and Number of Parameters
- 31 TCN models;
- 15 RNN, including 6 LSTMs, 7 GRUs, and 2 LMUs;
- 6 RFRs;
- a single SVR.
7.2. Training and Testing Methodology
7.2.1. Case Study and Dataset A
7.2.2. Case Study and Dataset B
8. Experimental Results
8.1. Dataset A: Performance Achieved in Case Study A
8.2. Dataset B: Performance Achieved in Case Study B, Prolonged Exposure to (Moderately) High-Temperature
9. Discussion of the Results and Deployability in Tiny Processor Studies
9.1. Selection of the Models
9.2. Deployability Analysis on Tiny Micro-Controllers
- Arm Cortex-M33, running at 160 MHz;
- Total embedded RAM: 786 KiB;
- Embedded FLASH: 2048 KiB;
- Off chip FLASH: 64 MB;
- Energy efficiency: 19 μA/MHz.
- Number of multiply-accumulate (MACC) operations for each model inference;
- Inference time;
- Random access memory (RAM) size;
- Flash memory size.
9.3. Discussion of the Results
10. Summary of This Work
11. Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pressure Sensor Market Size, Share & Trends Analysis Report by Product (Differential, Absolute), by Type (Wireless, Wired), by Technology (Capacitive, Optical), by Application (Oil & Gas, Medical), and Segment Forecasts, 2023–2030; Technical Report; Grand View Research, Inc.: San Francisco, CA, USA, 2023.
- Hajare, R.; Reddy, V.; Srikanth, R. MEMS based sensors—A comprehensive review of commonly used fabrication techniques. Mater. Today Proc. 2022, 49, 720–730. [Google Scholar] [CrossRef]
- Meti, S.; Balavald, K.B.; Sheeparmatti, B. MEMS piezoresistive pressure sensor: A survey. Int. J. Eng. Res. Appl. 2016, 6, 23–31. [Google Scholar]
- Zhou, G.; Zhao, Y.; Guo, F.; Xu, W. A Smart High Accuracy Silicon Piezoresistive Pressure Sensor Temperature Compensation System. Sensors 2014, 14, 12174–12190. [Google Scholar] [CrossRef] [PubMed]
- Rivera, J.; Carrillo, M.; Chacón, M.; Herrera, G.; Bojorquez, G. Self-calibration and optimal response in intelligent sensors design based on artificial neural networks. Sensors 2007, 7, 1509–1529. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-Dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 1–74. [Google Scholar] [CrossRef] [PubMed]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems; Pereira,, F., Burges, C., Bottou, L., Weinberger, K., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2012; Volume 25. [Google Scholar]
- Xu, X.; Zhang, Y. Second-hand house price index forecasting with neural networks. J. Prop. Res. 2022, 39, 215–236. [Google Scholar] [CrossRef]
- Zhang, G.; Qi, M. Neural network forecasting for seasonal and trend time series. Eur. J. Oper. Res. 2005, 160, 501–514. [Google Scholar] [CrossRef]
- Cybenko, G. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst. 1989, 2, 303–314. [Google Scholar] [CrossRef]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Stone, J.O. Air pressure and cosmogenic isotope production. J. Geophys. Res. Solid Earth 2000, 105, 23753–23759. [Google Scholar] [CrossRef]
- Li, B.; Harvey, B.; Gallagher, T. Using barometers to determine the height for indoor positioning. In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation, Montbeliard-Belfort, France, 28–31 October 2013; pp. 1–7. [Google Scholar] [CrossRef]
- Xia, H.; Wang, X.; Qiao, Y.; Jian, J.; Chang, Y. Using multiple barometers to detect the floor location of smart phones with built-in barometric sensors for indoor positioning. Sensors 2015, 15, 7857–7877. [Google Scholar] [CrossRef]
- Licciardo, G.D.; Vitolo, P.; Bosco, S.; Pennino, S.; Pau, D.; Pesaturo, M.; Di Benedetto, L.; Liguori, R. Ultra-Tiny Neural Network for Compensation of Post-soldering Thermal Drift in MEMS Pressure Sensors. In Proceedings of the 2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, 21–25 May 2023; pp. 1–5. [Google Scholar] [CrossRef]
- Vitolo, P.; Pau, D.; Licciardo, G.D.; Pesaturo, M.; Bosco, S.; Pennino, S. Tiny compensation of pressure drift measurements due to long exposures to high temperatures. In Proceedings of the 2023 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Kuala Lumpur, Malaysia, 22–25 May 2023; pp. 1–5. [Google Scholar] [CrossRef]
- STMicroelectronics. High-Performance MEMS Nano Pressure Sensor: 260–1260 hPa Absolute Digital Output Barometer; STMicroelectronics: Geneva, Switzerland, 2019. [Google Scholar]
- IPC/JEDEC J-STD-020C; Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. JEDEC Solid State Technology Association: Arlington, VA, USA, 2004.
- Chang, Y.; Cui, X.; Hou, G.; Jin, Y. Calibration of the Pressure Sensor Device with the Extreme Learning Machine. In Proceedings of the 2020 21st International Conference on Electronic Packaging Technology (ICEPT), Guangzhou, China, 12–15 August 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Najar, H. Electrical Only Calibration of Barometric Pressure Sensors Using Machine Learning. In Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS XXXIII), Berlin, Germany, 23–27 June 2019; pp. 1977–1980. [Google Scholar] [CrossRef]
- Patra, J.; Gopalkrishnan, V.; Ang, E.L.; Das, A. Neural network-based self-calibration/compensation of sensors operating in harsh environments [smart pressure sensor example]. In Proceedings of the SENSORS, 2004 IEEE, Vienna, Austria, 24–27 October 2004; Volume 1, pp. 425–428. [Google Scholar] [CrossRef]
- Wu, R.; Li, H.; Gao, L. Research on temperature drift mechanism and compensation method of silicon piezoresistive pressure sensors. AIP Adv. 2023, 13, 035323. [Google Scholar] [CrossRef]
- Ali, I.; Asif, M.; Shehzad, K.; Rehman, M.R.U.; Kim, D.G.; Rikan, B.S.; Pu, Y.; Yoo, S.S.; Lee, K.Y. A Highly Accurate, Polynomial-Based Digital Temperature Compensation for Piezoresistive Pressure Sensor in 180 nm CMOS Technology. Sensors 2020, 20, 5256. [Google Scholar] [CrossRef] [PubMed]
- Futane, N.; Chowdhury, S.R.; Chowdhury, C.R.; Saha, H. ANN based CMOS ASIC design for improved temperature-drift compensation of piezoresistive micro-machined high resolution pressure sensor. Microelectron. Reliab. 2010, 50, 282–291. [Google Scholar] [CrossRef]
- Soy, H.; Toy, İ. Design and implementation of smart pressure sensor for automotive applications. Measurement 2021, 176, 109184. [Google Scholar] [CrossRef]
- Zou, M.; Xu, Y.; Jin, J.; Chu, M.; Huang, W. Accurate Nonlinearity and Temperature Compensation Method for Piezoresistive Pressure Sensors Based on Data Generation. Sensors 2023, 23, 6167. [Google Scholar] [CrossRef]
- Sarmad, M.; Fatima, M.; Tayyub, J. Reducing Energy Consumption of Pressure Sensor Calibration Using Polynomial HyperNetworks with Fourier Features. Proc. Aaai Conf. Artif. Intell. 2022, 36, 12145–12153. [Google Scholar] [CrossRef]
- Xie, W.; Bai, P. A pressure sensor calibration model based on Support Vector Machine. In Proceedings of the 2012 24th Chinese Control and Decision Conference (CCDC), Taiyuan, China, 23–25 May 2012; pp. 3239–3242. [Google Scholar] [CrossRef]
- Chuan, Y.; Chen, L. The Application of Support Vector Machine in the Hysteresis Modeling of Silicon Pressure Sensor. IEEE Sens. J. 2011, 11, 2022–2026. [Google Scholar] [CrossRef]
- Wang, H.; Li, J. Machine Learning and Swarm Optimization Algorithm in Temperature Compensation of Pressure Sensors. Sensors 2022, 22, 8309. [Google Scholar] [CrossRef]
- Li, J.; Zhang, C.; Zhang, X.; He, H.; Liu, W.; Chen, C. Temperature Compensation of Piezo-Resistive Pressure Sensor Utilizing Ensemble AMPSO-SVR Based on Improved Adaboost.RT. IEEE Access 2020, 8, 12413–12425. [Google Scholar] [CrossRef]
- Zhao, X.; Li, P.; Xiao, K.; Meng, X.; Han, L.; Yu, C. Sensor Drift Compensation Based on the Improved LSTM and SVM Multi-Class Ensemble Learning Models. Sensors 2019, 19, 3844. [Google Scholar] [CrossRef]
- Wang, T.; Liu, P.; Zhang, W.; Jia, X.; Wang, Y.; Yang, J. Calibration of Multi-dimensional Air Pressure Sensor Based on LSTM. In Proceedings of the Artificial Intelligence and Security; Sun, X., Zhang, X., Xia, Z., Bertino, E., Eds.; Springer: Cham, Switzerland, 2022; pp. 532–543. [Google Scholar]
- Chaudhuri, T.; Wu, M.; Zhang, Y.; Liu, P.; Li, X. An Attention-Based Deep Sequential GRU Model for Sensor Drift Compensation. IEEE Sens. J. 2021, 21, 7908–7917. [Google Scholar] [CrossRef]
- Almassri, A.M.M.; Wan Hasan, W.Z.; Ahmad, S.A.; Shafie, S.; Wada, C.; Horio, K. Self-Calibration Algorithm for a Pressure Sensor with a Real-Time Approach Based on an Artificial Neural Network. Sensors 2018, 18, 2561. [Google Scholar] [CrossRef]
- Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; Volume 1, pp. 278–282. [Google Scholar] [CrossRef]
- Awad, M.; Khanna, R.; Awad, M.; Khanna, R. Support vector regression. In Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers; Apress Open, Apress Media, LLC: New York, NY, USA, 2015; pp. 67–80. [Google Scholar]
- Alade, I.O.; Zhang, Y.; Xu, X. Modeling and prediction of lattice parameters of binary spinel compounds (AM2X4) using support vector regression with Bayesian optimization. New J. Chem. 2021, 45, 15255–15266. [Google Scholar] [CrossRef]
- Cao, L.; Tay, F. Financial Forecasting Using Support Vector Machines. Neural Comput. Appl. 2001, 10, 184–192. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, X. Disordered MgB2 superconductor critical temperature modeling through regression trees. Phys. C Supercond. Appl. 2022, 597, 1354062. [Google Scholar] [CrossRef]
- Choubin, B.; Zehtabian, G.; Azareh, A.; Rafiei Sardooi, E.; Sajedi Hosseini, F.; Kisi, O. Precipitation forecasting using classification and regression trees (CART) model: A comparative study of different approaches. Environ. Earth Sci. 2018, 77, 314. [Google Scholar] [CrossRef]
- Lea, C.; Vidal, R.; Reiter, A.; Hager, G.D. Temporal convolutional networks: A unified approach to action segmentation. In Proceedings of the Computer Vision–ECCV 2016 Workshops, Amsterdam, The Netherlands, 8–10, 15–16 October 2016; Part III 14. Springer: Berlin/Heidelberg, Germany, 2016; pp. 47–54. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Internal Representations by Error Propagation; MIT Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; Moschitti, A., Pang, B., Daelemans, W., Eds.; Association for Computational Linguistics: Stroudsburg, PA, USA, 2014; pp. 1724–1734. [Google Scholar] [CrossRef]
- Voelker, A.R.; Kajić, I.; Eliasmith, C. Legendre Memory Units: Continuous-Time Representation in Recurrent Neural Networks. Adv. Neural Inf. Process. Syst. 2019, 32, 15544–15553. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Requirements | Definitions |
---|---|
REQ1 | The model should be deployable on the STM32U5 micro-controller series *. |
REQ2 | The accuracy of the compensation error achieved by the proposed model should be within the range of ±50 Pa as defined by [17]. |
REQ3 | The ratio of training samples to model parameters should not be lower than ten. |
Dataset | Measured Data | Generated Data | ||
---|---|---|---|---|
Number of DUTs | Quantities | Acquisition Time | ||
A | 80 | Pressure, Temperature | 249.5 h | 1 set: 80 curves of pressure accuracy with 250 samples |
B | 7 | Pressure, Temperature | 600 h | 3 sets: each one is 100 curves of pressure accuracy with 596 samples |
Datasets | Split Ratios Train, Validation, Test | Split DUTs Train, Validation, Test | Training Samples | Testing Samples |
---|---|---|---|---|
A | 80%, 10%, 10% | 64, 8, 8 | 16,000 | 2000 |
B | 80%, 10%, 10% | 80, 10, 10 | 47,680 | 5960 |
Datasets | Input Shape | Loss | Optimizer | Learning Rate | Batch Size | Epochs |
---|---|---|---|---|---|---|
A | (2,1) | MSE | ADAM [47] | Dynamic | 32 | 150 |
B | (1,1) | MSE | ADAM [47] | Cosine decay | 32 | 25 |
Models | MSE | MAE [Pa] | Params | Ratio | Comments |
---|---|---|---|---|---|
model_1_TCN | 421.1 | 16.85 | 101 | 158.42 | 1 dense + 2 conv layers (sigmoid + ReLU) |
model_2_TCN | 457.95 | 18.44 | 1192 | 13.42 | 1 dense + 2 conv layers |
model_3_TCN | 476.42 | 18.45 | 1234 | 12.97 | 8 dense layers |
model_4_TCN | 486.56 | 18.87 | 1656 | 9.66 | 1 dense + 3 conv layers |
model_5_TCN | 476.15 | 18.66 | 1752 | 9.13 | 2 dense + 1 conv + 1 dense layers |
model_6_TCN | 470.39 | 18.69 | 2340 | 6.84 | 2 dense + 2 conv layers |
model_7_TCN | 399.37 | 16.35 | 1992 | 8.03 | 3 dense layers |
model_8_TCN | 474.42 | 18.82 | 2200 | 7.27 | 2 dense + 3 conv layers |
model_9_TCN | 476.46 | 18.74 | 3370 | 4.75 | 6 dense layers |
model_10_TCN | 489.35 | 18.91 | 3448 | 4.64 | 2 dense + 3 conv + 1 dense layers |
model_11_TCN | 504.89 | 19.31 | 8784 | 1.82 | 2 dense + 3 conv + 1 dense layers |
model_12_TCN | 498.8 | 19.32 | 11,144 | 1.44 | 4 dense layers |
model_13_TCN | 471.73 | 18.85 | 13,172 | 1.21 | 2 dense + 2 conv + 1 dense layers |
model_14_TCN | 477.16 | 18.66 | 18,288 | 0.87 | 2 dense + 2 conv + 1 dense layers |
model_15_TCN | 489.83 | 18.57 | 18,440 | 0.87 | 2 dense + 2 conv + 1 dense + 1 conv layers |
model_16_TCN | 447.4 | 17.91 | 42,712 | 0.37 | 21 dense layers |
model_17_TCN | 532.05 | 19.92 | 56,540 | 0.28 | 1 dense + 2 conv + 1 dense + 1 conv layers |
model_18_TCN | 501.23 | 19.4 | 78,018 | 0.21 | 6 dense layers (LeakyReLu) |
model_19_TCN | 493.21 | 19.13 | 79,090 | 0.2 | 6 dense layers |
model_20_TCN | 514.32 | 19.51 | 83,616 | 0.19 | 7 dense layers |
model_21_TCN | 491 | 19.31 | 99,772 | 0.16 | 1 dense + 6 conv + 2 dense layers |
model_22_TCN | 480.82 | 19.02 | 132,524 | 0.12 | 1 dense + 4 conv + 2 dense layers |
model_23_TCN | 518.39 | 19.22 | 144,106 | 0.11 | 5 dense layers |
model_24_TCN | 479.76 | 19.02 | 298,796 | 0.05 | 5 dense layers |
model_25_TCN | 485.35 | 19.06 | 309,936 | 0.05 | 6 dense layers |
model_26_TCN | 468.35 | 18.65 | 320,736 | 0.05 | 11 dense layers |
model_27_TCN | 455.53 | 18.51 | 563,912 | 0.03 | 3 dense layers |
model_28_TCN | 531.5 | 19.85 | 647,148 | 0.02 | 1 dense + 2 conv + 1 dense layers |
model_29_TCN | 479.25 | 18.87 | 684,420 | 0.02 | 7 dense layers |
model_30_TCN | 483.86 | 19.08 | 824,076 | 0.02 | 9 dense layers |
model_31_TCN | 434.8 | 17.29 | 1,041,734 | 0.02 | 9 dense layers |
model_32_LSTM | 461.39 | 17.56 | 112 | 142.86 | LSTM |
model_33_GRU | 1307.27 | 30.54 | 100 | 160 | GRU |
model_34_GRU | 504.24 | 18.99 | 3449 | 4.64 | GRU |
model_35_LSTM | 471.86 | 18.38 | 4526 | 3.54 | TCN + Bidirectional GRU |
model_36_GRU | 433.6 | 17.18 | 4441 | 3.6 | LSTM |
model_37_GRU | 525.09 | 19.47 | 4654 | 3.44 | Bidirectional GRU |
model_38_LSTM | 454.35 | 18.59 | 5726 | 2.79 | TCN + Bidirectional LSTM |
model_39_LSTM | 495.65 | 19.21 | 5854 | 2.73 | Bidirectional LSTM |
model_40_LSTM | 517.1 | 19.97 | 7408 | 2.16 | TCN + LSTM |
model_41_GRU | 480.77 | 18.69 | 144,912 | 0.11 | TCN + GRU |
model_42_GRU | 502.7 | 19.3 | 289,360 | 0.06 | TCN + Bidirectional GRU |
model_43_GRU | 478.61 | 18.86 | 305,692 | 0.05 | deep Bidirectional GRU |
model_44_LSTM | 481.25 | 18.57 | 307,676 | 0.05 | deep Bidirectional LSTM |
model_45_LMU | 393.07 | 16.28 | 308 | 51.95 | LMU |
model_46_LMU | 502.62 | 19.19 | 94,592 | 0.17 | LMU + TCN |
model_47_RFR | 714.74 | 22.65 | 51,100 | 0.31 | estimators = 100, max_depth = 10 |
model_48_RFR | 713.41 | 22.61 | 102,200 | 0.16 | estimators = 200, max_depth = 10 |
model_49_RFR | 716.07 | 22.65 | 255,500 | 0.06 | estimators = 500, max_depth = 10 |
model_50_RFR | 750.41 | 22.8 | >1 M * | 0 | estimators = 100, max_depth = 100 |
model_51_RFR | 750.6 | 22.8 | >1 M | 0 | estimators = 200, max_depth = 100 |
model_52_RFR | 750.75 | 22.8 | >1 M | 0 | estimators = 500, max_depth = 100 |
model_53_SVR | 450.19 | 17.44 | 3 | 5333 | Linear kernel |
Models | MSE (DUT) | MAE [Pa] (DUT) | Params | Ratio | ||||
---|---|---|---|---|---|---|---|---|
(4,9) | (1,12,18) | (23) | (4,9) | (1,12,18) | (23) | |||
model_1_TCN | 80.33 | 390.19 | 164.09 | 7 | 17.8 | 10.92 | 88 | 541.82 |
model_2_TCN | 78.95 | 387.35 | 162.68 | 6.92 | 17.72 | 10.87 | 1172 | 40.68 |
model_3_TCN | 85.19 | 387.67 | 167.2 | 7.22 | 17.73 | 10.98 | 1,214 | 39.28 |
model_4_TCN | 77.55 | 386.64 | 159.49 | 6.87 | 17.7 | 10.81 | 1620 | 29.43 |
model_5_TCN | 79.86 | 389.08 | 157.62 | 6.97 | 17.79 | 10.72 | 1740 | 27.4 |
model_6_TCN | 79.18 | 390.21 | 168.13 | 6.94 | 17.79 | 10.99 | 1980 | 24.08 |
model_7_TCN | 82.02 | 390.59 | 168.39 | 7.05 | 17.83 | 10.99 | 2180 | 21.87 |
model_8_TCN | 80.98 | 390.36 | 164.83 | 7.03 | 17.82 | 10.9 | 2328 | 20.48 |
model_9_TCN | 80.98 | 390.13 | 166.63 | 7.04 | 17.82 | 10.97 | 3362 | 14.18 |
model_10_TCN | 78.1 | 387.52 | 153.93 | 6.87 | 17.76 | 10.66 | 3436 | 13.88 |
model_11_TCN | 81.52 | 386.88 | 157.6 | 7.06 | 17.68 | 10.75 | 8772 | 5.44 |
model_12_TCN | 80.58 | 389.48 | 159.83 | 6.99 | 17.81 | 10.82 | 11,132 | 4.28 |
model_13_TCN | 81.58 | 384.88 | 164.54 | 7.07 | 17.65 | 10.92 | 13,164 | 3.62 |
model_14_TCN | 82.01 | 383.05 | 161.86 | 7.1 | 17.6 | 10.84 | 18,280 | 2.61 |
model_15_TCN | 80.46 | 388.01 | 165.33 | 6.99 | 17.74 | 10.94 | 18,432 | 2.59 |
model_16_TCN | 84.19 | 387.6 | 171.46 | 7.19 | 17.7 | 11.08 | 42,196 | 1.13 |
model_17_TCN | 81.54 | 386.35 | 152.37 | 7.06 | 17.71 | 10.6 | 56,408 | 0.85 |
model_18_TCN | 79.71 | 390.45 | 158.94 | 6.97 | 17.8 | 10.79 | 78,006 | 0.61 |
model_19_TCN | 80.63 | 395.52 | 161.91 | 6.99 | 17.9 | 10.86 | 79,070 | 0.6 |
model_20_TCN | 81.02 | 385.29 | 162.56 | 7.04 | 17.65 | 10.86 | 83,604 | 0.57 |
model_21_TCN | 79.19 | 387.28 | 159.88 | 6.95 | 17.74 | 10.8 | 99,704 | 0.48 |
model_22_TCN | 79.77 | 387.55 | 160.66 | 7.01 | 17.74 | 10.82 | 132,456 | 0.36 |
model_23_TCN | 83.16 | 394.95 | 169.18 | 7.03 | 17.82 | 10.98 | 144,098 | 0.33 |
model_24_TCN | 79.89 | 387.85 | 153.75 | 7.01 | 17.75 | 10.66 | 297,768 | 0.16 |
model_25_TCN | 80.75 | 391.18 | 159.79 | 7.01 | 17.87 | 10.8 | 309,900 | 0.15 |
model_26_TCN | 80.66 | 386.67 | 163.84 | 7.03 | 17.69 | 10.91 | 320,604 | 0.15 |
model_27_TCN | 80.14 | 389.32 | 154.89 | 6.98 | 17.81 | 10.67 | 563,876 | 0.08 |
model_28_TCN | 81.79 | 389.96 | 159.26 | 7.05 | 17.83 | 10.78 | 646,888 | 0.07 |
model_29_TCN | 79.46 | 386.87 | 165 | 6.95 | 17.73 | 10.92 | 684,412 | 0.07 |
model_30_TCN | 85.16 | 402.83 | 165.69 | 7.13 | 17.98 | 10.88 | 824,064 | 0.06 |
model_31_TCN | 81.82 | 388.16 | 170.71 | 7.06 | 17.72 | 11.06 | 1,041,727 | 0.05 |
model_32_LSTM | 86.723 | 387.37 | 172.23 | 7.17 | 17.68 | 11 | 108 | 441.48 |
model_33_GRU | 82.873 | 407.33 | 173.96 | 7.04 | 18.03 | 11.03 | 96 | 496.67 |
model_34_GRU | 83.03 | 389.86 | 164.89 | 7.06 | 17.73 | 10.85 | 3437 | 13.87 |
model_35_LSTM | 83.29 | 390.65 | 162.48 | 7.07 | 17.76 | 10.75 | 4429 | 10.77 |
model_36_GRU | 82.3 | 390.82 | 162.11 | 7.09 | 17.84 | 10.84 | 4513 | 10.57 |
model_37_GRU | 79.14 | 391.28 | 160.54 | 6.95 | 17.85 | 10.8 | 4618 | 10.32 |
model_38_LSTM | 79.48 | 390.49 | 161.85 | 6.94 | 17.77 | 10.85 | 5713 | 8.35 |
model_39_LSTM | 80.46 | 393.67 | 162.56 | 7.02 | 17.88 | 10.85 | 5818 | 8.2 |
model_40_LSTM | 79.47 | 386.78 | 158.76 | 6.95 | 17.7 | 10.78 | 7340 | 6.5 |
model_41_GRU | 80 | 388.88 | 163.29 | 6.99 | 17.77 | 10.87 | 144,892 | 0.33 |
model_42_GRU | 79.09 | 387.85 | 162.46 | 6.95 | 17.76 | 10.86 | 289,340 | 0.16 |
model_43_GRU | 79.75 | 389.84 | 162.82 | 6.96 | 17.83 | 10.88 | 304,664 | 0.16 |
model_44_LSTM | 80.8 | 389.62 | 161.53 | 7 | 17.82 | 10.84 | 306,648 | 0.16 |
model_45_LMU | 80.42 | 398.97 | 160.4 | 6.99 | 17.9 | 10.79 | 300 | 158.93 |
model_47_RFR | 74.49 | 383.79 | 158.98 | 6.69 | 17.72 | 10.77 | 51,100 | 0.93 |
model_48_RFR | 74.53 | 383.74 | 159.1 | 6.69 | 17.72 | 10.77 | 102,200 | 0.47 |
model_49_RFR | 74.5 | 383.72 | 159.09 | 6.69 | 17.72 | 10.77 | 255,500 | 0.19 |
model_50_RFR | 73.41 | 383.27 | 158.35 | 6.61 | 17.72 | 10.76 | >1 M | 0 |
model_51_RFR | 73.43 | 383.21 | 158.45 | 6.61 | 17.72 | 10.76 | >1 M | 0 |
model_52_RFR | 73.4 | 383.2 | 158.46 | 6.61 | 17.72 | 10.76 | >1 M | 0 |
model_53_SVR | 87.12 | 385.64 | 241.889 | 7.29 | 17.41 | 12.8 | 2 | 23,840 |
Model | MAE [Pa] | Ratio |
---|---|---|
model_1_TCN | 16.85 | 158.42 |
model_7_TCN | 16.35 | 8.03 |
model_33_GRU | 30.54 | 160 |
model_45_LMU | 16.28 | 51.95 |
model_53_SVR | 17.44 | 5333 |
Model | MAE [Pa] | Ratio |
---|---|---|
model_1_TCN | 7 | 541.82 |
model_4_TCN | 6.87 | 29.43 |
model_33_GRU | 7.04 | 496.67 |
model_38_LSTM | 6.94 | 8.35 |
model_53_SVR | 7.29 | 23,840 |
Model | MAE [Pa] | Ratio |
---|---|---|
model_1_TCN | 17.8 | 541.82 |
model_14_TCN | 17.6 | 2.61 |
model_33_GRU | 18.03 | 496.67 |
model_32_LSTM | 17.68 | 441.48 |
model_53_SVR | 17.41 | 23,840 |
Model | MAE [Pa] | Ratio |
---|---|---|
model_1_TCN | 10.92 | 541.82 |
model_33_GRU | 11.03 | 496.67 |
model_35_LSTM | 10.75 | 10.77 |
model_53_SVR | 12.8 | 23,840 |
Model | MACC | Inference Time [μs] | RAM [KiB] | Flash [KiB] | MAE [Pa] |
---|---|---|---|---|---|
model_1_TCN | 146 | 51.31 | 2.36 | 13.34 | 16.85 |
model_7_TCN | 1673 | 95.71 | 2.23 | 16.72 | 16.35 |
model_33_GRU | 145 | 50.52 | 1.8 | 19.13 | 30.54 |
model_45_LMU | - | - | - | 19.23 | 16.28 |
model_53_SVR | 47,844 | 2,973 | 0.852 | 195.09 | 17.44 |
Model | MACC | Inference Time [μs] | RAM [KiB] | Flash [KiB] | MAE [Pa] |
---|---|---|---|---|---|
model_1_TCN | 137 | 50.30 | 2.36 | 13.31 | 7 |
model_4_TCN | 7601 | 949 | 4 | 17.66 | 6.87 |
model_33_GRU | 75 | 32.27 | 1.74 | 19.06 | 7.04 |
model_38_LSTM | 27,432 | 2538 | 4.47 | 44.19 | 6.94 |
model_53_SVR | 23,304 | 1,619 | 0.848 | 99.23 | 7.29 |
Model | MACC | Inference Time [μs] | RAM [KiB] | Flash [KiB] | MAE [Pa] |
---|---|---|---|---|---|
model_1_TCN | 137 | 50.68 | 2.36 | 13.31 | 17.8 |
model_14_TCN | 147,789 | 10,170 | 12.21 | 85.29 | 17.6 |
model_33_GRU | 75 | 32.72 | 1.74 | 19.06 | 18.03 |
model_32_LSTM | 107 | 41.67 | 1.85 | 17.35 | 17.68 |
model_53_SVR | 21,504 | 1494 | 0.848 | 92.2 | 17.41 |
Model | MACC | Inference Time [μs] | RAM [KiB] | Flash [KiB] | MAE [Pa] |
---|---|---|---|---|---|
model_1_TCN | 137 | 50.53 | 2.36 | 13.31 | 10.92 |
model_33_GRU | 75 | 31.64 | 1.74 | 19.06 | 11.03 |
model_35_LSTM | 35,121 | 3324 | 2.81 | 34.92 | 10.75 |
model_53_SVR | 7,118 | 495.5 | 0.848 | 36.01 | 12.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pau, D.; Ben Yahmed, W.; Aymone, F.M.; Licciardo, G.D.; Vitolo, P. Tiny Machine Learning Zoo for Long-Term Compensation of Pressure Sensor Drifts. Electronics 2023, 12, 4819. https://doi.org/10.3390/electronics12234819
Pau D, Ben Yahmed W, Aymone FM, Licciardo GD, Vitolo P. Tiny Machine Learning Zoo for Long-Term Compensation of Pressure Sensor Drifts. Electronics. 2023; 12(23):4819. https://doi.org/10.3390/electronics12234819
Chicago/Turabian StylePau, Danilo, Welid Ben Yahmed, Fabrizio Maria Aymone, Gian Domenico Licciardo, and Paola Vitolo. 2023. "Tiny Machine Learning Zoo for Long-Term Compensation of Pressure Sensor Drifts" Electronics 12, no. 23: 4819. https://doi.org/10.3390/electronics12234819
APA StylePau, D., Ben Yahmed, W., Aymone, F. M., Licciardo, G. D., & Vitolo, P. (2023). Tiny Machine Learning Zoo for Long-Term Compensation of Pressure Sensor Drifts. Electronics, 12(23), 4819. https://doi.org/10.3390/electronics12234819