Autonomous Wireless Sensor System for Emergency Monitoring Roads with Low Communication Coverage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wireless Sensor Nodes
2.2. Detection Algorithm
2.3. Frame Format
3. Results
3.1. Scenario
3.2. Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Albitres Salinas, J.A. Estudio de Tráfico Para su Mejoramiento de la Carretera Yura—Peaje Patahuasi, Parte de la Ruta Nacional PE-34 A, Arequipa. pp. 47, 104. 2019. Available online: https://repositorio.unjfsc.edu.pe/handle/20.500.14067/3264 (accessed on 25 January 2021).
- Ministerio de Transportes y Comunicaciones. Manual de Carreteras Diseño Geométrico; MTC: Lima, Peru, 2018; p. 38.
- Wang, C.; Fu, H.; Hu, G. Optimal emergency rescue route for traffic accident considering variabel rested. In Proceedings of the VI IEEE International Conference on Information Management, Innovation Management and Industrial Engineering, Xi’an, China, 23–24 November 2013. [Google Scholar]
- Rana, S.; Sengupta, S.; Jana, S.; Dan, R.; Sultana, M.; Sengupta, D. Prototype Proposal for Quick Accident Detection and Response System. In Proceedings of the IEEE Fifth International Conference on Research in Computational Intelligence and Communication Networks, Bangalore, India, 26–27 November 2020. [Google Scholar]
- Bhatia, N.; Dixit, Y.; Balamurugan, K.M. Accident Emergency Alert System using Deep Learning. In Proceedings of the IEEE Third International Conference on Artificial Intelligence and Smart Energy (ICAIS), Coimbatore, India, 2–4 February 2023; pp. 1–6. [Google Scholar]
- Sherif, H.M.; Shedid, M.A.; Senbel, S.A. Real Time Traffic Accident Detection System using Wireless Sensor Network. In Proceedings of the IEEE 6th International Conference of Soft Computing and Pattern Recognition (SoCPaR), Tunis, Tunisia, 11–14 August 2014. [Google Scholar]
- Adrian, R.; Sulistyo, S.; Mustika, I.W.; Alam, S. Roadside Unit Power Saving using Vehicle Detection System in Vehicular Ad-hoc Network. In Proceedings of the 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI), Yogyakarta, Indonesia, 10 December 2020; pp. 198–202. [Google Scholar] [CrossRef]
- Syfullah, M.; Lim, J.M.-Y. Data broadcasting on Cloud-VANET for IEEE 802.11p and LTE hybrid VANET architectures. In Proceedings of the 3rd International Conference on Computational Intelligence & Communication Technology (CICT), Ghaziabad, India, 9–10 February 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Urazghildiiev, R.; Ragnarsson, R.; Wallin, K.; Ridderstrom, R.A.; Ojefors, E. A vehicle classification system based on microwave radar measurement of height profiles. In Proceedings of the RADAR, Edinburgh, UK, 15–17 October 2002; pp. 409–413. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, S.; Ge, H.; Fan, P.; Fan, Q.; Letaief, K.B. Delay-Sensitive Task Offloading in Vehicular Fog Computing-Assisted Platoons. IEEE Trans. Netw. Serv. Manag. 2023. [Google Scholar] [CrossRef]
- Wu, Q.; Shi, S.; Wan, Z.; Fan, Q.; Fan, P.; Zhang, C. Towards V2I Age-Aware Fairness Access: A DQN Based Intelligent Vehicular Node Training and Test Method. Chin. J. Electron. 2023, 32, 1230–1244. [Google Scholar] [CrossRef]
- Urazghildiiev, I.; Ragnarsson, R.; Ridderstrom, P.; Rydberg, A.; Ojefors, E.; Wallin, K.; Enochsson, P.; Ericson, M.; Lofqvist, G. Classification Based on the Radar Measurement of Height Profiles. IEEE Trans. Intell. Transp. Syst. 2007, 8, 245–253. [Google Scholar] [CrossRef]
- Li, S.P.; Chan, Y.Y.; Liang, Y.; Chow, Y.T.; Ng, H.Y.; Keung, K.L. Side-view Dimensional Profiling of Drive-through Vehicle and Features Extraction by Using LiDAR and Camera. In Proceedings of the IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Kuala Lumpur, Malaysia, 7–10 December 2022; pp. 452–456. [Google Scholar] [CrossRef]
- Hoehmann, L.; Kummert, A. Mobility support for wireless sensor networks simulations for road intersection safety applications. In Proceedings of the 52nd IEEE International Midwest Symposium on Circuits and Systems, Cancun, Mexico, 2–5 August 2009; pp. 260–263. [Google Scholar] [CrossRef]
- Khaliq, K.A.; Chughtai, O.; Shahwani, A.; Qayyum, A.; Pannek, J. Road Accidents Detection, Data Collection and Data Analysis Using V2X Communication and Edge/Cloud Computing. Electronics 2019, 8, 896. [Google Scholar] [CrossRef]
- Thamaraimalanan, T.; Mohankumar, M.; Dhanasekaran, S.; Anandakumar, H. Experimental Analysis of an Intelligent Vehicle Tracking System via the Internet of Things (IoT). EAI Energy Web 2018, 21, e10. [Google Scholar] [CrossRef]
Global Cost of Developed Prototype | |||
---|---|---|---|
Components | Quantity | Cost in Dolars | |
Node | Radar MH-ET HB 100x 10.525 GHz | 6 | 10.04 |
ESP32-WROOM-32D | 6 | 3.88 | |
Sensor RCWL-0516 | 24 | 4.08 | |
Voltage reducer module MP1584 | 12 | 2.12 | |
Antenna 915MHZ 3dbi | 3 | 3.22 | |
Bee PRO 900HP S3B | 3 | 50 | |
Sensor Tem/hum AM 2330 | 3 | 2 | |
Sensor of rain | 3 | 2 | |
PCB + Cabling | 6 | 5 | |
Protective casing | 6 | 5 | |
Removable Towers | 6 | 35 | |
Batteries Ion-litio 18650 | 24 | 30 | |
Rasberry PI IV | 1 | 180 | |
Data analysis system | Batteries Ion-litio 18650 | 8 | 30 |
Antenna 915MHZ 3dbi | 1 | 3.22 | |
Bee PRO 900HP S3B | 1 | 50 | |
Voltage reducer module MP1584 | 2 | 1.06 | |
Protective casing | 1 | 2.5 | |
PCB + Cabling | 1 | 2.5 | |
TOTAL | 726.3 |
Number of Pulses Generated | Information They Represent |
---|---|
Pulses < to 10 units | 30 km/h < Speed < 60 km/h |
Pulses < to 10 units | Length vehicles < to 10 m |
Pulses < to 10 units > 20 units | 25 km/h < Speed > 40 km/h |
Pulses < to 10 units > 20 units | Length vehicles > to 10 m |
Pulses < to 10 units > 20 units | Length vehicles < 10 m, and speed less than 30 km/h |
Pulses < to 10 units | Length vehicles > 10 m, and speed less than 30 km/h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Postigo-Malaga, M.; Jimenez-Caceres, A.M.; Pelegri-Sebastia, J.; Chilo, J. Autonomous Wireless Sensor System for Emergency Monitoring Roads with Low Communication Coverage. Electronics 2023, 12, 4829. https://doi.org/10.3390/electronics12234829
Postigo-Malaga M, Jimenez-Caceres AM, Pelegri-Sebastia J, Chilo J. Autonomous Wireless Sensor System for Emergency Monitoring Roads with Low Communication Coverage. Electronics. 2023; 12(23):4829. https://doi.org/10.3390/electronics12234829
Chicago/Turabian StylePostigo-Malaga, Mauricio, Alexander M. Jimenez-Caceres, Jose Pelegri-Sebastia, and Jose Chilo. 2023. "Autonomous Wireless Sensor System for Emergency Monitoring Roads with Low Communication Coverage" Electronics 12, no. 23: 4829. https://doi.org/10.3390/electronics12234829
APA StylePostigo-Malaga, M., Jimenez-Caceres, A. M., Pelegri-Sebastia, J., & Chilo, J. (2023). Autonomous Wireless Sensor System for Emergency Monitoring Roads with Low Communication Coverage. Electronics, 12(23), 4829. https://doi.org/10.3390/electronics12234829