Diagnosis of Autism Spectrum Disorder Using Convolutional Neural Networks
Abstract
:1. Introduction
Study Contribution
- Proposing an approach to diagnose ASD based on deep learning, which utilizes the subjects’ handwriting;
- Creating a handwriting dataset to diagnose ASD, which to the best of the author’s knowledge is not available in the literature;
- Proposing an approach that ensembles neural networks to accept varying numbers of input images (for different tasks).
2. Related Work
3. Dataset and Preprocessing
4. Data Augmentation and Hyperparameters
5. Methodology
5.1. Convolutional Neural Network (CNN)
5.2. Transfer Learning
5.3. GoogleNet
5.4. Cross Validation
5.5. Evaluation Metrics
6. Results
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lefter, R.; Ciobica, A.; Timofte, D.; Stanciu, C.; Trifan, A. A descriptive review on the prevalence of gastrointestinal disturbances and their multiple associations in autism spectrum disorder. Medicina 2019, 56, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Reilly, C.; Lewis, J.D.; Elsabbagh, M. Is functional brain connectivity atypical in autism? A systematic review of EEG and MEG studies. PLoS ONE 2017, 12, e0175870. [Google Scholar] [CrossRef] [Green Version]
- Afif, I.Y.; Manik, A.R.; Munthe, K.; Maula, M.I.; Ammarullah, M.I.; Jamari, J.; Winarni, T.I. Physiological effect of deep pressure in reducing anxiety of children with ASD during traveling: A public transportation setting. Bioengineering 2022, 9, 157. [Google Scholar] [CrossRef] [PubMed]
- Mosadeghrad, A.M.; Pourreza, A.; Akbarpour, N. Economic burden of autism spectrum disorders in Iran. Tehran Univ. Med. J. 2019, 76, 665–671. [Google Scholar]
- Khan, N.Z.; Gallo, L.A.; Arghir, A.; Budisteanu, B.; Budisteanu, M.; Dobrescu, I.; Donald, K.; El-Tabari, S.; Hoogenhout, M.; Kalambayi, F.; et al. Autism and the grand challenges in global mental health. Autism Res. Off. J. Int. Soc. Autism Res. 2012, 5, 156–159. [Google Scholar] [CrossRef] [PubMed]
- Weitlauf, A.S.; Gotham, K.O.; Vehorn, A.C.; Warren, Z.E. Brief report: DSM-5 “levels of support:” A comment on discrepant conceptualizations of severity in ASD. J. Autism Dev. Disord. 2014, 44, 471–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.H.; Lord, C. Combining information from multiple sources for the diagnosis of autism spectrum disorders for toddlers and young preschoolers from 12 to 47 months of age. J. Child Psychol. Psychiatry 2012, 53, 143–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, W.L.; Coonrod, E.E.; Turner, L.M.; Pozdol, S.L. Psychometric properties of the STAT for early autism screening. J. Autism Dev. Disord. 2004, 34, 691–701. [Google Scholar] [CrossRef]
- Adamou, M.; Johnson, M.; Alty, B. Autism diagnostic observation schedule (ADOS) scores in males and females diagnosed with autism: A naturalistic study. Adv. Autism 2018, 4, 49–55. [Google Scholar] [CrossRef]
- Sritharan, B.; Koola, M.M. Barriers faced by immigrant families of children with autism: A program to address the challenges. Asian J. Psychiatry 2019, 39, 53–57. [Google Scholar] [CrossRef]
- Ashwood, K.; Gillan, N.; Horder, J.; Hayward, H.; Woodhouse, E.; McEwen, F.S.; Findon, J.; Eklund, H.; Spain, D.; Wilson, C.; et al. Predicting the diagnosis of autism in adults using the Autism-Spectrum Quotient (AQ) questionnaire. Psychol. Med. 2016, 46, 2595–2604. [Google Scholar] [CrossRef] [Green Version]
- Thabtah, F.; Kamalov, F.; Rajab, K. A new computational intelligence approach to detect autistic features for autism screening. Int. J. Med. Inform. 2018, 117, 112–124. [Google Scholar] [CrossRef]
- Dwyer, D.B.; Falkai, P.; Koutsouleris, N. Machine learning approaches for clinical psychology and psychiatry. Annu. Rev. Clin. Psychol. 2018, 14, 91–118. [Google Scholar] [CrossRef]
- Balas, V.E.; Roy, S.S.; Sharma, D.; Samui, P. (Eds.) Handbook of Deep Learning Applications; Springer: New York, NY, USA, 2019; Volume 136. [Google Scholar]
- Bianchini, M.; Dimitri, G.M.; Maggini, M.; Scarselli, F. Deep neural networks for structured data. In Computational Intelligence for Pattern Recognition; Springer: Cham, Switzerland, 2018; pp. 29–51. [Google Scholar]
- Cao, C.; Liu, F.; Tan, H.; Song, D.; Shu, W.; Li, W.; Zhou, Y.; Bo, X.; Xie, Z. Deep learning and it’s applications in biomedicine. Genom. Proteom. Bioinform. 2018, 16, 17–32. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Feng, D.; Mi, H. Deep convolutional neural network-based early automated detection of diabetic retinopathy using fundus image. Molecules 2017, 22, 2054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Casalino, L.P.; Khullar, D. Deep learning in medicine—Promise, progress, and challenges. JAMA Intern. Med. 2019, 179, 293–294. [Google Scholar] [CrossRef]
- Dimitri, G.M.; Agrawal, S.; Young, A.; Donnelly, J.; Liu, X.; Smielewski, P.; Hutchinson, P.; Czosnyka, M.; Lió, P.; Haubrich, C. A multiplex network approach for the analysis of intracranial pressure and heart rate data in traumatic brain injured patients. Appl. Netw. Sci. 2017, 2, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Khodatars, M.; Shoeibi, A.; Sadeghi, D.; Ghaasemi, N.; Jafari, M.; Moridian, P.; Khadem, A.; Alizadehsani, R.; Zare, A.; Kong, Y.; et al. Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: A review. Comput. Biol. Med. 2021, 139, 104949. [Google Scholar] [CrossRef] [PubMed]
- Shoeibi, A.; Khodatars, M.; Ghassemi, N.; Jafari, M.; Moridian, P.; Alizadehsani, R.; Panahiazar, M.; Khozeimeh, F.; Zare, A.; Hosseini-Nejad, H.; et al. Epileptic seizures detection using deep learning techniques: A review. Int. J. Environ. Res. Public Health 2021, 18, 5780. [Google Scholar] [CrossRef] [PubMed]
- Lord, C.; Elsabbagh, M.; Baird, G.; Veenstra-Vanderweele, J. Autism spectrum disorder. Lancet 2018, 392, 508–520. [Google Scholar] [CrossRef]
- Maenner, M.J.; Rice, C.E.; Arneson, C.L.; Cunniff, C.; Schieve, L.A.; Carpenter, L.A.; Braun, K.V.N.; Kirby, R.S.; Bakian, A.V.; Durkin, M.S. Potential impact of DSM-5 criteria on autism spectrum disorder prevalence estimates. JAMA Psychiatry 2014, 71, 292–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ecker, C.; Marquand, A.; Mourão-Miranda, J.; Johnston, P.; Daly, E.M.; Brammer, M.J.; Maltezos, S.; Murphy, C.M.; Robertson, D.; Williams, S.C.; et al. Describing the brain in autism in five dimensions—Magnetic resonance imaging-assisted diagnosis of autism spectrum disorder using a multiparameter classification approach. J. Neurosci. 2010, 30, 10612–10623. [Google Scholar] [CrossRef] [Green Version]
- Jaliaawala, M.S.; Khan, R.A. Can autism be catered with artificial intelligence-assisted intervention technology? A comprehensive survey. Artif. Intell. Rev. 2020, 53, 1039–1069. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, R.; Matsubara, T.; Uehara, K. Data augmentation using random image cropping and patching for deep CNNs. IEEE Trans. Circuits Syst. Video Technol. 2019, 30, 2917–2931. [Google Scholar] [CrossRef] [Green Version]
- Levy, S.; Duda, M.; Haber, N.; Wall, D.P. Sparsifying machine learning models identify stable subsets of predictive features for behavioral detection of autism. Mol. Autism 2017, 8, 65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heinsfeld, A.S.; Franco, A.R.; Craddock, R.C.; Buchweitz, A.; Meneguzzi, F. Identification of autism spectrum disorder using deep learning and the ABIDE dataset. NeuroImage Clin. 2018, 17, 16–23. [Google Scholar] [CrossRef]
- Sewani, H.; Kashef, R. An autoencoder-based deep learning classifier for efficient diagnosis of autism. Children 2020, 7, 182. [Google Scholar] [CrossRef]
- Zhou, T.; Xie, Y.; Zou, X.; Li, M. An Automated Assessment Framework for Speech Abnormalities related to Autism spectrum disorder. In Proceedings of the 3rd International Workshop on Affective Social Multimedia Computing (ASMMC), Stockholm, Sweden, 25 August 2017. [Google Scholar]
- Ahmed, I.A.; Senan, E.M.; Rassem, T.H.; Ali, M.A.; Shatnawi, H.S.A.; Alwazer, S.M.; Alshahrani, M. Eye Tracking-Based Diagnosis and Early Detection of Autism Spectrum Disorder Using Machine Learning and Deep Learning Techniques. Electronics 2022, 11, 530. [Google Scholar] [CrossRef]
- Kong, Y.; Gao, J.; Xu, Y.; Pan, Y.; Wang, J.; Liu, J. Classification of autism spectrum disorder by combining brain connectivity and deep neural network classifier. Neurocomputing 2019, 324, 63–68. [Google Scholar] [CrossRef]
- Haweel, R.; Shalaby, A.M.; Mahmoud, A.H.; Ghazal, M.; Seada, N.; Ghoniemy, S.; Casanova, M.; Barnes, G.N.; El-Baz, A. A Novel Grading System for Autism Severity Level Using Task-based Functional MRI: A Response to Speech Study. IEEE Access 2021, 9, 100570–100582. [Google Scholar] [CrossRef]
- Cilia, F.; Carette, R.; Elbattah, M.; Dequen, G.; Guérin, J.-L.; Bosche, J.; Vandromme, L.; Le Driant, B. Computer-aided screening of autism spectrum disorder: Eye-tracking study using data visualization and deep learning. JMIR Hum. Factors 2021, 8, e27706. [Google Scholar] [CrossRef] [PubMed]
- Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–23 August 2017; pp. 1–6. [Google Scholar]
- Shin, H.C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 2016, 35, 1285–1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dawud, A.M.; Yurtkan, K.; Oztoprak, H. Application of deep learning in neuroradiology: Brain haemorrhage classification using transfer learning. Comput. Intell. Neurosci. 2019, 2019, 4629859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y. Overfeat: Integrated recognition, localization and detection using convolutional networks. arXiv 2013, arXiv:1312.6229. [Google Scholar]
- Shaha, M.; Pawar, M. Transfer learning for image classification. In Proceedings of the 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 29–31 March 2018; pp. 656–660. [Google Scholar]
- Bougias, H.; Georgiadou, E.; Malamateniou, C.; Stogiannos, N. Identifying cardiomegaly in chest X-rays: A cross-sectional study of evaluation and comparison between different transfer learning methods. Acta Radiol. 2020, 62, 0284185120973630. [Google Scholar] [CrossRef] [PubMed]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 8–10 June 2015; pp. 1–9. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097–1105. [Google Scholar] [CrossRef] [Green Version]
- Jiddah, S.M.; Abushakra, M.; Yurtkan, K. Fusion of geometric and texture features for side-view face recognition using svm. Istat. J. Turk. Stat. Assoc. 2021, 13, 108–119. [Google Scholar]
- Sidey-Gibbons, J.A.; Sidey-Gibbons, C.J. Machine learning in medicine: A practical introduction. BMC Med. Res. Methodol. 2019, 19, 64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeVries, Z.; Locke, E.; Hoda, M.; Moravek, D.; Phan, K.; Stratton, A.; Kingwell, S.; Wai, E.K.; Phan, P. Using a national surgical database to predict complications following posterior lumbar surgery and comparing the area under the curve and F1-score for the assessment of prognostic capability. Spine J. 2021, 21, 1135–1142. [Google Scholar] [CrossRef] [PubMed]
Study | Proposed Methodology | Accuracy (%) |
---|---|---|
Meaner et al. [23] | DSM-5 diagnosis data/Autism and Developmental Disabilities Monitoring Network (ADDM) | 86.5 |
Ahmed et al. [31] | Eye-tracking data images/GoogleNet | 95.5 |
Zhou et al. [30] | Speech spectrogram/End-to-end deep neural network | 90 |
Heinsfeld et al. [28] | Autism brain imaging data/SVM | 70 |
Sewani & Kashef [29] | Autism brain imaging data/Auto encoder–CNN | 84.5 |
Kong et al. [32] | Autism brain imaging data/Autoencoder–DNN | 90.39 |
Haweel et al. [33] | Speech-activated brain response/SVM | 81 |
Cilia et al. [34] | Eye-tracking data images/CNN | 90 |
CNN Model | Accuracy (%) | Sensitivity (%) | Specificity (%) |
---|---|---|---|
Alexnet | 76.19 | 0.50 | 1 |
Resnet 18 | 80.95 | 0.60 | 1 |
VGG 16 | 85.71 | 0.70 | 1 |
Squeeze net | 90.48 | 0.80 | 1 |
GoogleNet | 90.48 | 0.80 | 1 |
Previous Studies | Methodology | Accuracy (%) | Sensitivity (%) | Specificity (%) | F1 Score (%) |
---|---|---|---|---|---|
Ahmed et al. [31] | Eye-tracking dataset/Deep learning | 97.6 | 97.0 | 97.0 | - |
Sewani and Kashef [29] | ABIDE dataset/Deep learning | 84.0 | 80.0 | 75.3 | - |
Zhou et al. [30] | Spectrogram/Deep learning | 90.0 | - | - | - |
Our study | Handwritten dataset/Deep learning | 90.48 | 80.0 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hendr, A.; Ozgunalp, U.; Erbilek Kaya, M. Diagnosis of Autism Spectrum Disorder Using Convolutional Neural Networks. Electronics 2023, 12, 612. https://doi.org/10.3390/electronics12030612
Hendr A, Ozgunalp U, Erbilek Kaya M. Diagnosis of Autism Spectrum Disorder Using Convolutional Neural Networks. Electronics. 2023; 12(3):612. https://doi.org/10.3390/electronics12030612
Chicago/Turabian StyleHendr, Amna, Umar Ozgunalp, and Meryem Erbilek Kaya. 2023. "Diagnosis of Autism Spectrum Disorder Using Convolutional Neural Networks" Electronics 12, no. 3: 612. https://doi.org/10.3390/electronics12030612
APA StyleHendr, A., Ozgunalp, U., & Erbilek Kaya, M. (2023). Diagnosis of Autism Spectrum Disorder Using Convolutional Neural Networks. Electronics, 12(3), 612. https://doi.org/10.3390/electronics12030612