Novel PV Power Hybrid Prediction Model Based on FL Co-Training Method
Abstract
:1. Introduction
- (1)
- This paper proposes a hybrid prediction model. The model consists of LSTM and BPNN. The LSTM is used to extract important features from the time-series data, and the BPNN can compensate for the shortcomings of the LSTM network’s insufficient fitting ability to achieve a higher-accuracy energy consumption prediction.
- (2)
- This paper is the first to propose a FL-LSTM-BPNN model for PV power prediction. The hybrid prediction model is trained collaboratively under FL, and the data features of each company are federated. It can both improve the model generalization ability, reduce the communication cost, and protect the data privacy.
2. FL-Based Co-Training Method for Hybrid Prediction Models
2.1. Overall Program
2.2. Federated Learning Algorithm
2.3. Hybrid Prediction Model
3. Experiments
3.1. Data Acquisition and Experimentation Platform
3.2. Experimental Results and Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lorenz, E.; Scheidsteger, T.; Hurka, J.; Heinemann, D.; Kurz, C. Regional PV power prediction for improved grid integration. Prog. Photovolt. Res. Appl. 2011, 19, 757–771. [Google Scholar] [CrossRef]
- Blaabjerg, F.; Teodorescu, R.; Liserre, M.; Timbus, A.V. Overview of Control and Grid Synchronization for Distributed Power Generation Systems. IEEE Trans. Ind. Electron. 2006, 53, 1398–1409. [Google Scholar] [CrossRef]
- Sobri, S.; Koohi-Kamali, S.; Rahim, N.A. Solar photovoltaic generation forecasting methods: A review. Energy Convers. Manag. 2018, 156, 459–497. [Google Scholar] [CrossRef]
- Mellit, A.; Pavan, A.M.; Ogliari, E.; Leva, S.; Lughi, V. Advanced Methods for Photovoltaic Output Power Forecasting: A Review. Appl. Sci. 2020, 10, 487. [Google Scholar] [CrossRef]
- Yang, D.; Dong, Z. Operational photovoltaics power forecasting using seasonal time series ensemble. Sol. Energy 2018, 166, 529–541. [Google Scholar] [CrossRef]
- Muhammad Ehsan, R.; Simon, S.P.; Venkateswaran, P.R. Day-ahead forecasting of solar photovoltaic output power using multilayer perceptron. Neural Comput. Appl. 2017, 28, 3981–3992. [Google Scholar] [CrossRef]
- Wang, K.; Qi, X.; Liu, H. Photovoltaic power forecasting based LSTM-Convolutional Network. Energy 2019, 189, 116225. [Google Scholar] [CrossRef]
- Maleki, A.; Eskandar Filabi, Z.; Nazari, M.A. Techno-Economic Analysis and Optimization of an Off-Grid Hybrid Photovoltaic–Diesel–Battery System: Effect of Solar Tracker. Sustainability 2022, 14, 7296. [Google Scholar] [CrossRef]
- Sharifpur, M.; Ahmadi, M.H.; Rungamornrat, J.; Mohsen, F.M. Thermal Management of Solar Photovoltaic Cell by Using Single Walled Carbon Nanotube (SWCNT)/Water: Numerical Simulation and Sensitivity Analysis. Sustainability 2022, 14, 11523. [Google Scholar] [CrossRef]
- Alamin, Y.I.; Anaty, M.K.; Álvarez Hervás, J.D.; Bouziane, K.; Pérez García, M.; Yaagoubi, R.; del Mar Castilla, M.; Belkasmi, M.; Aggour, M. Very short-term power forecasting of high concentrator photovoltaic power facility by implementing artificial neural network. Energies 2020, 13, 3493. [Google Scholar] [CrossRef]
- Das, U.K.; Tey, K.S.; Seyedmahmoudian, M.; Idna Idris, M.Y.; Mekhilef, S.; Horan, B.; Stojcevski, A. SVR-based model to forecast PV power generation under different weather conditions. Energies 2017, 10, 876. [Google Scholar] [CrossRef]
- Al-Dahidi, S.; Ayadi, O.; Adeeb, J.; Alrbai, M.; Qawasmeh, B.R. Extreme learning machines for solar photovoltaic power predictions. Energies 2018, 11, 2725. [Google Scholar] [CrossRef]
- Si, Z.; Yang, M.; Yu, Y.; Ding, T.; Li, M. A Hybrid Photovoltaic Power Prediction Model Based on Multi-source Data Fusion and Deep Learning. In Proceedings of the 2020 IEEE 3rd Student Conference on Electrical Machines and Systems (SCEMS), Jinan, China, 4–6 December 2020; pp. 608–613. [Google Scholar]
- Tehrani, K.; Simde, D.; Fozing, J.; Jamshidi, M. A 3D Design of Small Hybrid Farm for Microgrids. In Proceedings of the 2022 World Automation Congress (WAC), San Antonio, TX, USA, 11–15 October 2022; pp. 1–6. [Google Scholar]
- Mubarak, H.; Hammoudeh, A.; Ahmad, S.; Abdellatif, A.; Mekhilef, S.; Mokhlis, H.; Dupont, S. A hybrid machine learning method with explicit time encoding for improved Malaysian photovoltaic power prediction. J. Clean. Prod. 2022, 382, 134979. [Google Scholar] [CrossRef]
- Mellit, A.; Pavan, A.M.; Lughi, V. Deep learning neural networks for short-term photovoltaic power forecasting. Renew. Energy 2021, 172, 276–288. [Google Scholar] [CrossRef]
- Abdel-Nasser, M.; Mahmoud, K. Accurate photovoltaic power forecasting models using deep LSTM-RNN. Neural Comput. Appl. 2019, 31, 2727–2740. [Google Scholar] [CrossRef]
- Sun, X.Y.; Li, J.Z.; Zeng, B.; Gong, D.W.; Lian, Z.Y. Small-sample day-ahead power load forecasting of integrated energy system based on feature trans-fer learning. Control. Theory Appl. 2021, 38, 63–72. (In Chinese) [Google Scholar]
- Zhang, Y.; Tao, Y.F.; Gong, D.W. Load forecasting of buildings using LSTM based on transfer learning with variable source do-main. Control. Decis. 2021, 36, 2328–2338. (In Chinese) [Google Scholar]
- Goncalves, C.; Bessa, R.J.; Pinson, P. Privacy-preserving distributed learning for renewable energy forecasting. IEEE Trans. Sustain. Energy 2021, 12, 1777–1787. [Google Scholar] [CrossRef]
- Konečný, J.; McMahan, H.B.; Yu, F.X.; Richtárik, P.; Suresh, A.T.; Bacon, D. Federated learning: Strategies for improving communication efficiency. arXiv 2016, arXiv:1610.05492. [Google Scholar]
- Yang, Q.; Liu, Y.; Chen, T.; Tong, Y. Federated machine learning: Concept and applications. ACM Trans. Intell. Syst. Technol. 2019, 10, 1–19. [Google Scholar] [CrossRef]
- He, W.C.; Guo, S.Y.; Qiu, X.S.; Chen, L.; Zhang, S. Node selection method in federated learning based on deep reinforcement learning. J. Commun. 2021, 42, 62–71. (In Chinese) [Google Scholar]
- Mills, J.; Hu, J.; Min, G. Communication-efficient federated learning for wireless edge intelligence in IoT. IEEE Internet Things J. 2019, 7, 5986–5994. [Google Scholar] [CrossRef]
- Zhou, C.; Fu, A.; Yu, S.; Yang, W.; Wang, H.; Zhang, Y. Privacy-preserving federated learning in fog computing. IEEE Internet Things J. 2020, 7, 10782–10793. [Google Scholar] [CrossRef]
- Zheng, K.; Xiao, Y.; Wang, X. A Federated Learning Framework for Power Grid Metering System. Proc. CSEE 2020, 40, 122–133. [Google Scholar]
- Lee, J.; Sun, J.; Wang, F.; Wang, S.; Jun, C.H.; Jiang, X. Privacy-preserving patient similarity learning in a federated environment: Development and analysis. JMIR Med. Inform. 2018, 6, e20. [Google Scholar] [CrossRef]
- Werbos, P. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D. Thesis, Harvard University, Cambridge, MA, USA, 1974. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhube, J. LSTM: A search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2016, 28, 2222–2232. [Google Scholar] [CrossRef] [Green Version]
- Oppenheim, A.V.; Buck, J.R.; Schafer, R.W. Discrete-Time Signal Processing.; Prentice Hall: Upper Saddle River, NJ, USA, 2001; Volume 2. [Google Scholar]
- Heaton, J. Introduction to Neural Networks with Java; Heaton Research, Inc.: Chesterfield, MO, USA, 2008. [Google Scholar]
Categories | Version |
---|---|
Operating System | Windows 10 |
CPU | Intel Core i9-10900k |
GPU | NVIDIA GeForce GTX 3080 |
RAM | 32 Gb |
Tensorflow-GPU | Tensorflow-GPU1.13.2 |
Keras | Keras 2.1.5 |
Cuda | Cuda 10.0 |
Cudnn | Cudnn 7.4.1.5 |
Model | Hyperparameter | Search Space | Optimum Value |
---|---|---|---|
LSTM-BPNN | the cell hidden state dimension | [5, 10, 15, 20, 25, 30] | 20 |
the number of BPNN hidden layers | [1, 2, 3, 4] | 1 | |
the BPNN activation function | [relu, sigmoid, tanh] | relu |
RMSE/kW | MAPE/% | |
---|---|---|
BP | 6174.93 | 3.84 |
LSTM | 5831.54 | 3.25 |
LSTM-BPNN | 4991.83 | 2.63 |
Area | RMSE/kW | Boosting Effect/% | |
---|---|---|---|
LSTM-BPNN | FL-LSTM-BPNN | ||
1 | 4991.83 | 2332.38 | 53.27% |
2 | 1353.39 | 462.78 | 65.80% |
3 | 8669.03 | 3232.77 | 62.71% |
4 | 21,053.59 | 10,585.07 | 49.72% |
5 | 1227.12 | 464.13 | 62.18% |
Area | MAPE/% | Boosting Effect/% | |
---|---|---|---|
LSTM-BPNN | FL-LSTM-BPNN | ||
1 | 2.63 | 1.20 | 54.37% |
2 | 6.85 | 2.33 | 65.98% |
3 | 4.44 | 1.55 | 65.10% |
4 | 4.58 | 2.06 | 55.02% |
5 | 14.83 | 5.44 | 63.31% |
Model | RMSE/kW | MAPE/% |
---|---|---|
LSTM-BPNN | 14,840.82 | 3.42 |
FL-LSTM-BPNN | 9686.76 | 2.36 |
Model | RMSE/kW | MAPE/% |
---|---|---|
LSTM-BPNN | 4552.56 | 4.61 |
FL-LSTM-BPNN | 3414.42 | 3.55 |
Model | RMSE/kW | MAPE/% |
---|---|---|
LSTM-BPNN | 8973.56 | 4.18 |
FL-LSTM-BPNN | 6819.91 | 3.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Shen, H.; Li, F.; Wu, Y.; Li, M.; Shi, Z.; Deng, F. Novel PV Power Hybrid Prediction Model Based on FL Co-Training Method. Electronics 2023, 12, 730. https://doi.org/10.3390/electronics12030730
Wang H, Shen H, Li F, Wu Y, Li M, Shi Z, Deng F. Novel PV Power Hybrid Prediction Model Based on FL Co-Training Method. Electronics. 2023; 12(3):730. https://doi.org/10.3390/electronics12030730
Chicago/Turabian StyleWang, Hongxi, Hongtao Shen, Fei Li, Yidi Wu, Mengyu Li, Zhengang Shi, and Fangming Deng. 2023. "Novel PV Power Hybrid Prediction Model Based on FL Co-Training Method" Electronics 12, no. 3: 730. https://doi.org/10.3390/electronics12030730
APA StyleWang, H., Shen, H., Li, F., Wu, Y., Li, M., Shi, Z., & Deng, F. (2023). Novel PV Power Hybrid Prediction Model Based on FL Co-Training Method. Electronics, 12(3), 730. https://doi.org/10.3390/electronics12030730