Methodological Research on Image Registration Based on Human Brain Tissue In Vivo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Algorithm Description
2.1.1. Segmentation of Brain Tissues
2.1.2. Edge Detection of Brain Tissues
2.1.3. Detection of Feature Points
- Feature point of original brain image
- Feature point of brain tissue boundary
2.1.4. Matching of Feature Points
2.1.5. Screening of Matching Pairs of Feature Points
2.1.6. Spatial Transformation
2.2. Evaluation Index for the Registration Accuracy
2.2.1. MSD
2.2.2. NCC
2.2.3. NMI
2.2.4. MI
2.3. Data Source and Preprocessing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sergent, J. Brain-imaging studies of cognitive functions. Trends Neurosci. 1994, 17, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Andrade, N.; Faria, F.A.; Cappabianco, F.A.M. A practical review on medical image registration: From rigid to deep learning based approaches. In Proceedings of the 2018 31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Paraná, Brazil, 29 October–1 November 2018. [Google Scholar]
- Hermessi, H.; Mourali, O.; Zagrouba, E. Multimodal medical image fusion review: Theoretical background and recent advances. Signal Process. 2021, 183, 108036. [Google Scholar] [CrossRef]
- Zhangpei, C. Research on 3D Biomedical Brain Image Registration Algorithm Based on Deep Learning. Master’s Thesis, Anhui University, Hefei, China, 2020. [Google Scholar]
- Kuppala, K.; Banda, S.; Barige, T.R.; Fusion, D. An overview of deep learning methods for image registration with focus on feature-based approaches. Int. J. Image Data Fusion 2020, 11, 113–135. [Google Scholar] [CrossRef]
- Yuen, J.; Barber, J.; Ralston, A.; Gray, A.; Walker, A.; Hardcastle, N.; Schmidt, L.; Harrison, K.; Poder, J.; Sykes, J.R. An international survey on the clinical use of rigid and deformable image registration in radiotherapy. J. Appl. Clin. Med. Phys. 2020, 21, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Presti, L.L.; La Cascia, M. Multi-modal Medical Image Registration by Local Affine Transformations. In Proceedings of the ICPRAM, Funchal, Portugal, 16–18 January 2018. [Google Scholar]
- Haskins, G.; Kruger, U.; Yan, P. Deep learning in medical image registration: A survey. Mach. Vis. Appl. 2020, 31, 8. [Google Scholar] [CrossRef]
- Zachariadis, O.; Teatini, A.; Satpute, N.; Gómez-Luna, J.; Mutlu, O.; Elle, O.J.; Olivares, J. Accelerating B-spline interpolation on GPUs: Application to medical image registration. Comput. Methods Programs Biomed. 2020, 193, 105431. [Google Scholar] [CrossRef]
- Thirion, J.P. Image matching as a diffusion process: An analogy with Maxwell’s demons. Med. Image Anal. 1998, 2, 221–227. [Google Scholar] [CrossRef]
- Balakrishnan, G.; Zhao, A.; Sabuncu, M.R.; Guttag, J.; Dalca, A.V. An unsupervised learning model for deformable medical image registration. In Proceedings of the IEEE Conference on Computer Vision and pattern recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Lowe, D.G. Object recognition from local scale-invariant features. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Bay, H.; Tuytelaars, T.; Gool, L.V. Surf: Speeded up robust features. In Proceedings of the European Conference on Computer Vision, Berlin/Heidelberg, Germany, 7–13 May 2006. [Google Scholar]
- Harris, C.; Stephens, M. A combined corner and edge detector. In Proceedings of the Alvey Vision Conference, Manchester, UK, 31 August–2 September 1988. [Google Scholar]
- Fu, Y.; Lei, Y.; Wang, T.; Curran, W.J.; Liu, T.; Yang, X. Deep learning in medical image registration: A review. Phys. Med. Biol. 2020, 65, 20TR01. [Google Scholar] [CrossRef]
- Abbasi, S.; Tavakoli, M.; Boveiri, H.R.; Shirazi, M.A.M.; Khayami, R.; Khorasani, H.; Javidan, R.; Mehdizadeh, A. Medical image registration using unsupervised deep neural network: A scoping literature review. Biomed. Signal. Process. Control. 2022, 73, 103444. [Google Scholar] [CrossRef]
- Fan, J.; Cao, X.; Yap, P.-T.; Shen, D. BIRNet: Brain image registration using dual-supervised fully convolutional networks. Med. Image Anal. 2019, 54, 193–206. [Google Scholar] [CrossRef]
- Mahapatra, D.; Ge, Z. Training data independent image registration using generative adversarial networks and domain adaptation. Pattern. Recognit. 2020, 100, 107109. [Google Scholar] [CrossRef]
- Chen, J.; He, Y.; Frey, E.C.; Li, Y.; Du, Y. Vit-v-net: Vision transformer for unsupervised volumetric medical image registration. arXiv 2021, arXiv:2104.06468. [Google Scholar]
- Song, L.; Liu, G.; Ma, M. TD-Net: Unsupervised medical image registration network based on Transformer and CNN. Appl. Intell. 2022, 52, 18201–18209. [Google Scholar] [CrossRef]
- Fischler, M.A.; Bolles, R.C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 1981, 24, 381–395. [Google Scholar] [CrossRef]
- Jiying, L.; Yonghong, Y.; Qiang, W.; Yan, W.; Yilin, Y. Research on Improved SURF Breast Registration Algorithm in Multi-Mode MRI. Laser Optoelectron. Pro 2020, 57, 121010. [Google Scholar] [CrossRef]
- Bishop, C.M.; Nasrabadi, N.M. Pattern Recognition and Machine Learning, 1st ed.; Springer: Berlin, Germany, 2006; pp. 78–110. [Google Scholar]
- Yongxia, L. Research on Thickness Measurement and Registration of Cerebral Cortex Based on MRI. Master’s Thesis, Liaoning University, Shenyang, China, 2021. [Google Scholar]
- Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 1977, 39, 1–22. [Google Scholar]
- Öziç, M.Ü.; Ekmekci, A.H.; Özşen, S. Atlas-Based Segmentation Pipelines on 3D Brain MR Images: A Preliminary Study. BRAIN. Broad Res. Artif. Intell. Neurosci. 2018, 9, 129–140. [Google Scholar]
- Derong, Y. Research on Non-Rigid Medical Image Registration Technology. Master’s Thesis, Nanchang Hangkong University, Nanchang, China, 2019. [Google Scholar]
- Zitova, B.; Flusser, J. Image registration methods: A survey. Image Vis. Comput. 2003, 21, 977–1000. [Google Scholar] [CrossRef]
- Sarvaiya, J.N.; Patnaik, S.; Bombaywala, S. Image registration by template matching using normalized cross-correlation. In Proceedings of the 2009 International Conference on Advances in Computing Control, and Telecommunication Technologies, Angalore, India, 28–29 December 2009. [Google Scholar]
- Studholme, C.; Hill, D.L.; Hawkes, D.J. An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognit. 1999, 32, 71–86. [Google Scholar] [CrossRef]
- Viola, P.; Wells, W.M., III. Alignment by maximization of mutual information. Int. J. Comput. Vis. 1997, 24, 137–154. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, T.; Lei, Y.; Patel, P.; Jani, A.B.; Curran, W.J.; Liu, T.; Yang, X. Deformable MR-CBCT prostate registration using biomechanically constrained deep learning networks. Med. Phys. 2021, 48, 253–263. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Yang, B.; Wang, Y.; Tian, J.; Yin, L.; Zheng, W. 2D/3D multimode medical image registration based on normalized cross-correlation. Appl. Sci. 2022, 12, 2828. [Google Scholar] [CrossRef]
- Gerber, N.; Carrillo, F.; Abegg, D.; Sutter, R.; Zheng, G.; Fürnstahl, P. Evaluation of CT-MR image registration methodologies for 3D preoperative planning of forearm surgeries. J. Orthop. Res. 2020, 38, 1920–1930. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; He, F.; Li, H.; Zhang, D.; Wu, Y. A full migration BBO algorithm with enhanced population quality bounds for multimodal biomedical image registration. Appl. Soft. Comput. 2020, 93, 106335. [Google Scholar] [CrossRef]
- Paul, S.; Pati, U.C. High-resolution optical-to-SAR image registration using mutual information and SPSA optimisation. IET Image Process 2021, 15, 1319–1331. [Google Scholar] [CrossRef]
- Nan, A.; Tennant, M.; Rubin, U.; Ray, N. Drmime: Differentiable mutual information and matrix exponential for multi-resolution image registration. In Proceedings of the Medical Imaging with Deep Learning, Montreal, QC, Canada, 6–9 July 2020. [Google Scholar]
- Klein, A.; Andersson, J.; Ardekani, B.A.; Ashburner, J.; Avants, B.; Chiang, M.-C.; Christensen, G.E.; Collins, D.L.; Gee, J.; Hellier, P. Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. Neuroimage 2009, 46, 786–802. [Google Scholar] [CrossRef]
- Bian, J.-W.; Wu, Y.-H.; Zhao, J.; Liu, Y.; Zhang, L.; Cheng, M.-M.; Reid, I. An evaluation of feature matchers for fundamental matrix estimation. In Proceedings of the British Machine Vision Conference (BMVC), Cardiff, UK, 9—12 September 2019. [Google Scholar]
- Zhang, T.; Zhao, R.; Chen, Z. Application of migration image registration algorithm based on improved SURF in remote sensing image mosaic. IEEE Access 2020, 8, 163637–163645. [Google Scholar] [CrossRef]
- Chen, S.; Zhong, S.; Xue, B.; Li, X.; Zhao, L.; Chang, C.-I. Iterative scale-invariant feature transform for remote sensing image registration. IEEE Trans. Geosci. Remote Sens. 2020, 59, 3244–3265. [Google Scholar] [CrossRef]
- Damas, S.; Cordón, O.; Santamaría, J. Medical image registration using evolutionary computation: An experimental survey. IEEE Comput. Intell. Mag. 2011, 6, 26–42. [Google Scholar] [CrossRef]
- Lan, S.; Guo, Z.; You, J. Non-rigid medical image registration using image field in Demons algorithm. Pattern Recognit. Lett. 2019, 125, 98–104. [Google Scholar] [CrossRef]
- Chakraborty, S.; Pradhan, R.; Ashour, A.S.; Moraru, L.; Dey, N. Grey-Wolf-Based Wang’s Demons for retinal image registration. Entropy 2020, 22, 659. [Google Scholar] [CrossRef]
- Han, R.; De Silva, T.; Ketcha, M.; Uneri, A.; Siewerdsen, J. A momentum-based diffeomorphic demons framework for deformable MR-CT image registration. Phys. Med. Biol. 2018, 63, 215006. [Google Scholar] [CrossRef]
- Mancini, M.; Casamitjana, A.; Peter, L.; Robinson, E.; Crampsie, S.; Thomas, D.L.; Holton, J.L.; Jaunmuktane, Z.; Iglesias, J.E. A multimodal computational pipeline for 3D histology of the human brain. Sci. Rep. 2020, 10, 13839. [Google Scholar] [CrossRef]
Registration Algorithm | Evaluation of Registration Effect (Mean ± Standard Deviation) | |||
---|---|---|---|---|
MSD | NCC | NMI | MI | |
Sift | 0.0808 ± 0.0205 | 0.1083 ± 0.0465 | 1.0534 ± 0.0024 | 0.6220 ± 0.0477 |
Demons | 0.0272 ± 0.0037 | 0.7439 ± 0.0288 | 1.1228 ± 0.0060 | 1.3054 ± 0.0738 |
Surf | 0.0337 ± 0.0049 | 0.7347 ± 0.0345 | 1.1262 ± 0.0032 | 1.3478 ± 0.0230 |
our method | 0.0299 ± 0.0048 | 0.7756 ± 0.0269 | 1.1309 ± 0.0044 | 1.3915 ± 0.0233 |
Registration Algorithm | Evaluation of Registration Effect (Mean ± Standard Deviation) | |||
---|---|---|---|---|
MSD | NCC | NMI | MI | |
Sift | 0.0663 ± 0.0123 | 0.1170 ± 0.0498 | 1.0557 ± 0.0031 | 0.6446 ± 0.0568 |
Demons | 0.0271 ± 0.0067 | 0.7172 ± 0.0145 | 1.1234 ± 0.0055 | 1.2892 ± 0.0471 |
Surf | 0.0305 ± 0.0087 | 0.7137 ± 0.0261 | 1.1303 ± 0.0031 | 1.3711 ± 0.0271 |
our method | 0.0245 ± 0.0072 | 0.7833 ± 0.0287 | 1.1409 ± 0.0032 | 1.4708 ± 0.0357 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nan, J.; Su, J.; Zhang, J. Methodological Research on Image Registration Based on Human Brain Tissue In Vivo. Electronics 2023, 12, 738. https://doi.org/10.3390/electronics12030738
Nan J, Su J, Zhang J. Methodological Research on Image Registration Based on Human Brain Tissue In Vivo. Electronics. 2023; 12(3):738. https://doi.org/10.3390/electronics12030738
Chicago/Turabian StyleNan, Jiaofen, Junya Su, and Jincan Zhang. 2023. "Methodological Research on Image Registration Based on Human Brain Tissue In Vivo" Electronics 12, no. 3: 738. https://doi.org/10.3390/electronics12030738
APA StyleNan, J., Su, J., & Zhang, J. (2023). Methodological Research on Image Registration Based on Human Brain Tissue In Vivo. Electronics, 12(3), 738. https://doi.org/10.3390/electronics12030738