ADSAttack: An Adversarial Attack Algorithm via Searching Adversarial Distribution in Latent Space
Abstract
:1. Introduction
- We turn the adversarial example generation problem into a search problem and propose training an adversarial distribution searching network which can search an adversarial perturbation distribution in the image’s own latent space. Once trained, our searching network could immediately extract the adversarial distribution of each input image. The adversarial example generation time is, therefore, fast for input images;
- We simultaneously use feedback from multiple target classifiers to update the parameters of the adversarial distribution searching network, thus obtaining universal adversarial examples with high transferability;
- We use a novel approach to utilize an edge-detection algorithm to locate low-level feature mapping in input space to sketch the minimum effective disturbed area and conduct different operations on maps from different image channels. Experimental results obtained show that our method achieves a balance between having an imperceptible visual effect and having a high attack success rate.
2. Related Work
2.1. Improvement of Transferability
2.2. GAN-Based Adversarial Attacks
2.3. Conductions on Visual Effect
3. Attack Methodology
3.1. ADSAttack
3.2. Formal Description
Algorithm 1: ADSAttack adversarial attack. |
Input: Input examples x and its label y; Target classifier ; Searching Network ; Number of data m; Total number of iterations N Output: Search network parameters
|
3.3. Adversarial Distribution Searching Network
3.4. Edge-Detection Algorithm
3.5. Image-Channel-Based Noise Adding Method
4. Experimental Method and Evaluation
4.1. Experimental Setups
4.2. Image-Channel-Based Noise Adding Method
4.3. Algorithm Efficiency and Visual Comparisons
4.4. Transferability Evaluation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maqueda, A.I.; Loquercio, A.; Gallego, G.; García, N.; Scaramuzza, D. Event-based vision meets deep learning on steering prediction for self-driving cars. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5419–5427. [Google Scholar]
- Kononenko, I. Machine learning for medical diagnosis: History, state of the art and perspective. Artif. Intell. Med. 2001, 23, 89–109. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572. [Google Scholar]
- Guo, W.; Tondi, B.; Barni, M. An overview of backdoor attacks against deep neural networks and possible defences. arXiv 2021, arXiv:2111.08429. [Google Scholar] [CrossRef]
- Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks. arXiv 2013, arXiv:1312.6199. [Google Scholar]
- Ilyas, A.; Santurkar, S.; Tsipras, D.; Engstrom, L.; Tran, B.; Madry, A. Adversarial examples are not bugs, they are features. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 125–136. [Google Scholar]
- Liu, Y.; Chen, X.; Liu, C.; Song, D. Delving into transferable adversarial examples and black-box attacks. In Proceedings of the International Conference on Learning Representations, Toulon, France, 24–26 April 2017. [Google Scholar]
- Inkawhich, N.; Liang, K.; Carin, L.; Chen, Y. Transferable perturbations of deep feature distributions. In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26 April–1 May 2020. [Google Scholar]
- Xiao, C.; Li, B.; Zhu, J.Y.; He, W.; Liu, M.; Song, D. Generating adversarial examples with adversarial networks. In Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18, Stockholm, Sweden, 13–19 July 2018; pp. 3905–3911. [Google Scholar] [CrossRef]
- Jandial, S.; Mangla, P.; Varshney, S.; Balasubramanian, V. Advgan++: Harnessing latent layers for adversary generation. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, Seoul, Republic of Korea, 27–28 October 2019. [Google Scholar]
- Liu, X.; Hsieh, C.-J. Rob-gan: Generator, discriminator, and adversarial attacker. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Mescheder, L.; Nowozin, S.; Geiger, A. The numerics of gans. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; pp. 1–17. [Google Scholar]
- Liu, C.; Shirowzhan, S.; Sepasgozar, S.M.; Kaboli, A. Evaluation of classical operators and fuzzy logic algorithms for edge detection of panels at exterior cladding of buildings. Buildings 2019, 9, 40. [Google Scholar] [CrossRef]
- Zhu, Y.; Sun, J.; Li, Z. Rethinking adversarial transferability from a data distribution perspective. In Proceedings of the International Conference on Learning Representations, Virtual, 3–7 May 2021. [Google Scholar]
- Wang, Z.; Guo, H.; Zhang, Z.; Liu, W.; Qin, Z.; Ren, K. Feature importance-aware transferable adversarial attacks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 7639–7648. [Google Scholar]
- Xie, C.; Zhang, Z.; Zhou, Y.; Bai, S.; Wang, J.; Ren, Z.; Yuille, A.L. Improving transferability of adversarial examples with input diversity. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 2730–2739. [Google Scholar]
- Tu, C.-C.; Ting, P.; Chen, P.-Y.; Liu, S.; Zhang, H.; Yi, J.; Hsieh, C.-J.; Cheng, S.-M. Autozoom: Autoencoder-based zeroth order optimization method for attacking black-box neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019; Volume 33, pp. 742–749. [Google Scholar]
- Huang, Z.; Zhang, T. Black-box adversarial attack with transferable model-based embedding. In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26 April–1 May 2020. [Google Scholar]
- Zhao, Z.; Dua, D.; Singh, S. Generating natural adversarial examples. In Proceedings of the International Conference on Learning Representations (ICLR), Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Deb, D.; Zhang, J.; Jain, A.K. Advfaces: Adversarial face synthesis. arXiv 2019, arXiv:1908.05008. [Google Scholar]
- Shamsabadi, A.S.; Sanchez-Matilla, R.; Cavallaro, A. Colorfool: Semantic adversarial colorization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Bhattad, A.; Chong, M.J.; Liang, K.; Li, B.; Forsyth, D.A. Unrestricted adversarial examples via semantic manipulation. In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 26 April–1 May 2020. [Google Scholar]
- Dong, X.; Han, J.; Chen, D.; Liu, J.; Bian, H.; Ma, Z.; Li, H.; Wang, X.; Zhang, W.; Yu, N. Robust superpixel-guided attentional adversarial attack. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar]
- Dartnall, H.J.A.; Bowmaker, J.K.; Mollon, J.D. Human visual pigments microspectrophotometric results from the eyes of seven persons. R. Lond. Ser. B 1983, 220, 115–130. [Google Scholar]
- Cicerone, C.M.; Nerger, J.L. The relative numbers of long-wavelength-sensitive to middle-wavelength-sensitive cones in the human fovea centralis. Vis. Res. 1989, 29, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Carlini, N.; Wagner, D. Towards evaluating the robustness of neural networks. In Proceedings of the 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–24 May 2017; pp. 39–57. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.-C. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.A. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef]
- Aleksander, M.; Aleksandar, M.; Ludwig, S.; Dimitris, T.; Adrian, V. Towards deep learning models resistant to adversarial attacks. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. Imagenet classification with deep convolutional neural networks. Adv. Neural Inform. Processing Syst. 2012, 25, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Liu, Z.; Laurens, V.; Weinberger, K.Q. Densely connected convolutional networks. arXiv 2016, arXiv:1608.06993. [Google Scholar]
- Xiao, Z.; Gao, X.; Fu, C.; Dong, Y.; Gao, W.; Zhang, X.; Zhou, J.; Zhu, J. Improving transferability of adversarial patches on face recognition with generative models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 11845–11854. [Google Scholar]
Attack | ResNet-50 | VGG-16 | GoogleNet | MobileNet-v2 | ||||
---|---|---|---|---|---|---|---|---|
Success (%) | Time | Success (%) | Time | Success (%) | Time | Success (%) | Time | |
FGSM | 85.58 | 43.49 ± 0.12 s | 93.96 | 45.39 ± 0.06 s | 88.75 | 41.68 ± 0.25 s | 94.26 | 41.30 ± 0.44 s |
PGD | 99.36 | 76.23 ± 0.27 s | 99.02 | 105.56 ± 0.18 s | 99.57 | 75.43 ± 0.05 s | 99.64 | 69.52 ± 0.05 s |
AdvGAN | 98.20 | 17.32 ± 0.32 s | 95.72 | 16.39 ± 0.47 s | 98.16 | 17.99 ± 0.26 s | 97.77 | 18.32 ± 0.09 s |
TREMBA | 99.52 | 437.66 ± 0.52 s | 99.99 | 316.91 ± 0.28 s | 99.85 | 280.15 ± 0.11 s | 99.99 | 144.82 ± 0.52 s |
ColorFool | 89.72 | 26.98 ± 0.12 h | 91.25 | 24.50 ± 0.55 h | 85.29 | 29.88 ± 0.38 h | 89.23 | 30.93 ± 0.19 h |
ADSAttack | 98.36 | 10.58 ± 0.22 s | 98.92 | 11.22 ± 0.13 s | 95.28 | 12.76 ± 0.46 s | 99.53 | 9.75 ± 0.24 s |
Transfer | MobileNet-v2 | ResNet-50 | VGG-16 | GoogleNet |
---|---|---|---|---|
MobileNet-v2 | 99.53 | 50.07 | 58.29 | 17.09 |
ResNet-50 | 80.53 | 98.13 | 93.54 | 82.05 |
VGG-16 | 77.45 | 49.00 | 98.31 | 33.62 |
GoogleNet | 71.29 | 72.10 | 87.22 | 96.06 |
Attack | MobileNet-v2 | ResNet-50 | VGG-16 | GoogleNet |
---|---|---|---|---|
Universal example | 96.22 | 96.66 | 97.33 | 95.44 |
Attack (Black-Box) | AlexNet | DenseNet | ResNet-152 | ResNet-34 |
---|---|---|---|---|
FGSM | 22.56 | 35.29 | 20.20 | 43.86 |
PGD | 15.32 | 21.67 | 12.04 | 25.54 |
AdvGAN | 48.54 | 52.25 | 43.87 | 54.66 |
ColorFool | 37.28 | 44.36 | 35.16 | 47.18 |
ADSAttack (Universal) | 75.74 | 87.48 | 80.90 | 89.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Zhu, C.; Cao, Y.; Zhuang, Y.; Li, J.; Chen, X. ADSAttack: An Adversarial Attack Algorithm via Searching Adversarial Distribution in Latent Space. Electronics 2023, 12, 816. https://doi.org/10.3390/electronics12040816
Wang H, Zhu C, Cao Y, Zhuang Y, Li J, Chen X. ADSAttack: An Adversarial Attack Algorithm via Searching Adversarial Distribution in Latent Space. Electronics. 2023; 12(4):816. https://doi.org/10.3390/electronics12040816
Chicago/Turabian StyleWang, Haobo, Chenxi Zhu, Yangjie Cao, Yan Zhuang, Jie Li, and Xianfu Chen. 2023. "ADSAttack: An Adversarial Attack Algorithm via Searching Adversarial Distribution in Latent Space" Electronics 12, no. 4: 816. https://doi.org/10.3390/electronics12040816
APA StyleWang, H., Zhu, C., Cao, Y., Zhuang, Y., Li, J., & Chen, X. (2023). ADSAttack: An Adversarial Attack Algorithm via Searching Adversarial Distribution in Latent Space. Electronics, 12(4), 816. https://doi.org/10.3390/electronics12040816