Comparing the Sustainability of Different Powertrains for Urban Use
Abstract
:1. Introduction
- Global effects of assessing the consumption of non-renewable primary energy (NRPE) and GHG emissions;
- local polluting emissions such as CO, NOx, NO2, NH4, volatile organic compounds (VOCs), CH4, and PM.
- Toyota Prius Hybrid 2016;
- Toyota Yaris Gasoline 2017;
- Toyota Auris Diesel 2017;
- Nissan Leaf 2018;
- Toyota Yaris Hybrid 2020.
2. WTW Analysis
2.1. Well To Tank (WTT)
2.2. Tank To Well (TTW)
2.3. WTW Analysis Results
3. Car Fleet Analysis
3.1. Italian Car Fleet Forecasting
3.2. Circulating Car Fleet of Rome Province
3.3. The Rome Car Fleet of 2025
- Scrapping of EURO 0 to EURO 2 vehicles (affecting 17% of the circulating fleet);
- Scrapping of EURO 0 to EURO 3 vehicles (affecting 27% of the circulating fleet);
- Market evolution accordingly to the Italian trend.
- The scenarios mentioned above are only a few of the possible ones. The first and second involve more pollutant vehicles with scrappage schemes used to promote car turnover similar to past initiatives made by the Italian government; they assume the replacement of vehicles by maintaining the same power supply, using the hybrid version (if available). Thus, gasoline will become a gasoline–electric hybrid, and diesel will be a EURO 6 diesel. Hybrid diesel still does not have the same market appeal as hybrid gasoline (HEV), and there is not enough vehicle availability to be a suitable substitution in most cases. The third scenario aims to compare previous schemes with no other national policies. It follows the market evolution, for example, the same proportion of the national car fleet trend and the same scrapping rate.
- Each year there are many scrapped vehicles in all EURO categories (even in EURO 6), following the proportion shown in Table 4;
- The new vehicles have the latest EURO standard;
- Each fuel category has a defined proportion by size; it is assumed to be the same as the 2021 car fleet.
4. Results
4.1. Actual Rome Car Fleet Emissions
4.2. Emissions of the 2025 Car Fleet
5. Conclusions and Future Developments
- A sharp increase in HEVg (gasoline–electric), HEVd (diesel–electric), and BEV sectors by 180%, 251%, and 238%, respectively;
- A moderate rise in bi-fuel gasoline–LPG by 22% and gasoline–CNG by 265%;
- A slight decrease in gasoline (1%) and diesel vehicles (18%).
- First, scrapping of EURO 0 to 2 vehicles involving 19% of the whole circulating car fleet;
- Second, scrapping of EURO 0 to 3 vehicles involving 31% of the whole circulating car fleet;
- Third, actual market growth equal to the Italian trend.
- The manuscript has hypothesized only a few scenarios of the possible ones to exemplify a comparison method. The first and second involve more pollutant vehicles with scrappage schemes similar to past initiatives made by the Italian government; they assume the replacement of vehicles by maintaining the same power supply, using the hybrid version (if available). The third scenario represents no specific national policy that follows the Italian market evolution of 2021.
- The GHG and the NRPE reductions are between 7% and 3%;
- The scrapping of EURO 0 to EURO 2 vehicles guarantees a significant reduction in CO, VOC, NOx, and PM;
- The third scenario (market growth) has less benefit in pollution reduction, but it has a more significant impact on reducing the FC (with respect to the first and second scenarios).
- Simulations with the next EURO 7 standard;
- Experimental data of biogenic fuels and other powertrains (hybrid or not);
- Emissions relative to the production mix of 2021 and 2022 (the recent rise in energy prices pushes the installation of renewable production plants and reduces the GHG emissions of energy usage);
- User acceptance of new technologies and market analysis will allow understanding of people’s choices for vehicle replacement (e.g., someone could replace an obsolete diesel vehicle with a BEV or a methane one);
- Analysis of transport behaviour with the distance travelled annually divided by the fuel and vehicle category.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Description |
ACI | Automobile Club d’Italia |
BEV | Battery Electric Vehicle |
CH4 | Methane |
CNG | Compressed Natural Gas |
CO | Carbon Oxide |
CO2 | Carbon Dioxide |
COPERT | The EU standard vehicle emissions calculator |
DC | Driving Cycle |
EF | Emission Factor |
GHG | Greenhouse Gas |
HCFC | Hydrochlorofluorocarbons |
HEV | Hybrid-electric Vehicle |
HFC | Hydrofluorocarbons |
KS | Kinematic Sequence |
LPG | Liquid Petroleum Gas |
NH4 | Ammonia |
NO2 | Nitrogen Dioxide |
NOx | Nitrogen Oxide |
NPV | Non-Passenger Vehicle |
NRPE | Non-Renewable Primary Energy |
OBD | On-Board Diagnostic |
PM | Particulate Matter |
TTW | Tank To Wheel |
VOC | Volatile Organic Compound |
WMO | World Meteorological Organization |
WTT | Well To Tank |
WTW | Well To Wheel |
ZEV | Zero Emission Vehicle |
References
- European Commission. Delivering the European Green Deal. 2021. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal/delivering-european-green-deal_en (accessed on 13 December 2021).
- European Commission. 2050 Long-Term Strategy. 2021. Available online: https://ec.europa.eu/clima/eu-action/climate-strategies-targets/2050-long-term-strategy_it (accessed on 29 December 2021).
- Capros, P.P. EU Energy, Transport and GHG Emissions—Trends to 2050. 2016. Available online: http://pure.iiasa.ac.at/id/eprint/13656/1/REF2016_report_FINAL-web.pdf (accessed on 13 January 2022).
- European Environment Agency (EEA). Greenhouse Gas Emissions by Aggregated Sector. 2019. Available online: www.eea.europa.eu/data-and-maps/daviz/ghg-emissions-by-aggregated-sector-5#tab-dashboard-02 (accessed on 10 January 2022).
- Orecchini, F.; Santiangeli, A.; Zuccari, F.; Alessandrini, A.; Cignini, F.; Ortenzi, F. Real Drive Truth Test of the Toyota Yaris Hybrid 2020 and energy analysis comparison with the 2017 model. Energy 2021, 14, 8032. [Google Scholar] [CrossRef]
- Orecchini, F.; Santiangeli, A.; Zuccari, F. Hybrid-electric system truth test: Energy analysis of Toyota Prius IV in real urban drive conditions. Sustain. Energy Technol. Assess. 2020, 37, 100573. [Google Scholar] [CrossRef]
- Orecchini, F.; Santiangeli, A.; Zuccari, F.; Ortenzi, F.; Genovese, A.; Spazzafumo, G. Nardone. Energy consumption of a last generation full hybrid vehicle compared with a conventional vehicle in real drive conditions. Energy Procedia 2018, 148, 289–296. [Google Scholar] [CrossRef]
- Gustafsson, M.; Svensson, N.; Eklund, M.; Möller, B. Well-to-wheel climate performance of gas and electric vehicles in Europe. Transp. Res. Part D Transp. Environ. 2021, 97, 102911. [Google Scholar] [CrossRef]
- Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles; Argonne National Lab. (ANL): Argonne, IL, USA, 2010. [Google Scholar] [CrossRef]
- Genovese, A.; Ortenzi, F.; Villante, C. On the energy efficiency of quick DC vehicle battery charging. World Electr. Veh. J. 2015, 7, 570–576. [Google Scholar] [CrossRef]
- Edwards, R.; Rose, K.; Nelson, R.; Hamje, H.; Godwin, S.; Reid, A.; Maas, H.; Lonza, L.; Hass, H.; Krasenbrink, A.; et al. Well-To-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context; Publications Office of the European Union: Luxembourg, 2014. [Google Scholar] [CrossRef]
- Cirillo, M. Parametri Standard Nazionali. 2018. Available online: https://www.mite.gov.it/sites/default/files/archivio/allegati/emission_trading/tabella_coefficienti_standard_nazionali_11022019.pdf (accessed on 22 December 2021).
- Caputo, A. Fattore di Emissione Atmosterica di a Effetto gas Serra nel Settore Elettrico Nazionale e nei Principali Paesi Europei. 2020; ISBN 978-88-448-0992-8. Available online: https://www.isprambiente.gov.it/files2020/pubblicazioni/rapporti/Rapporto317_2020.pdf (accessed on 20 December 2021).
- De Gennaro, M.; Paffumi, E.; Martini, G.; Manfredi, U.; Vianelli, S.; Ortenzi, F.; Genovese, A. Experimental Test Campaign on a Battery Electric Vehicle: On-Road Test Results (Part 2). In Proceedings of the SAE 2015 World Congress & Exhibition, Detroit, MI, USA, 21–23 April 2015. [Google Scholar] [CrossRef]
- Alessandrini, A.; Filippi, F.; Ortenzi, F. Consumption calculation of vehicles using OBD data. In Proceedings of the International Emission Inventory Conference, Tampa, FL, USA, 13–16 August 2012. [Google Scholar]
- Lee, C.; Öberg, P. Classification of Road Type and Driving Style Using OBD Data; SAE Technical Papers; SAE: Warrendale, PA, USA, 2015. [Google Scholar] [CrossRef]
- ISFORT. 17° Rapporto Sulla Mobilità Degli Italiani. 25 November 2020. Available online: https://www.isfort.it/wp-content/uploads/2020/12/RapportoMobilita2020.pdf (accessed on 15 January 2022).
- Audimob. 2019. Available online: https://www.isfort.it/ricerca/audimob/ (accessed on 15 January 2022).
- Fontaras, G.; Zacharo, N.-G.; Ciuffo, B. Fuel consumption and CO2 emissions from passenger cars in Europe—Laboratory versus real-world emissions. Prog. Energy Combust. Sci. 2017, 60, 91–131. [Google Scholar] [CrossRef]
- Tsokolis, D.; Tsiakmakis, S.; Dimaratosa, A.; Fontaras, G.; Pistikopoulosa, P.; Ciuffo, B.; Samaras, Z. Fuel consumption and CO2 emissions of passenger cars over the New Worldwide Harmonized Test Protocol. Appl. Energy 2016, 179, 1152–1165. [Google Scholar] [CrossRef]
- Galvin, R. Energy consumption effects of speed and acceleration in electric vehicles: Laboratory case studies and implications for drivers and policymakers. Transp. Res. Part D Transp. Environ. 2017, 53, 234–248. [Google Scholar] [CrossRef]
- Ntziachristos, L.; Samaras, Z.; European Environment Agency (EEA). EMEP/EEA Air Pollutant Emission Inventory Guidebook 2016—Update July 2018; Publications Office of the European Union: Luxembourg, 2018; Available online: https://www.eea.europa.eu/themes/air/air-pollution-sources-1/emep-eea-air-pollutant-emission-inventory-guidebook (accessed on 27 November 2021).
- Crauser, J.-P.; Maurin, M.; Joumard, R. Representative Kinematic Sequences for the Road Traffic in France. J. Passeng. Cars 1989, 98, 1011–1018. [Google Scholar]
- Cignini, F.; Alessandrini, A.; Orecchini, F.; Santiangeli, A.; Zuccari, F.; Ortenzi, F. A statistical analysis to compare results of different on-road vehicle performance testing. Transp. Res. Part D 2022, 107, 103281. [Google Scholar] [CrossRef]
- Tartaglia, M. L’inquinamento Dell’aria da Traffico Stradale. Analisi, Calcolo, Valutazione; Bios: Cosenza, Italia, 1999; ISBN 9788877402707. [Google Scholar]
- Kenworthy, J.R. Driving Cycles, Urban Form and Transport Energy. Ph.D. Thesis, Murdoch University, Singapore, 1986. Available online: https://researchrepository.murdoch.edu.au/id/eprint/125/ (accessed on 19 January 2022).
- Ganji, B.; Kouzani, A.Z.; Trinh, H. Drive Cycle Analysis of the Performance of Hybrid Electric Vehicles. In Proceedings of the ICSEE 2010, Wuxi, China, 17–20 September 2010. [Google Scholar] [CrossRef]
- Kent, J.H.; Allen, G.H.; Rule, G. A driving cycle for Sydney. Transp. Res. 1978, 12, 147–152. [Google Scholar] [CrossRef]
- Castelli, M. Quanto Tempo Servirà per Rinnovare il Parco Auto Circolante Italiano? Fleet Magazine, 25 October 2021. Available online: https://www.fleetmagazine.com/parco-auto-circolante-italiano-tempi-rinnovamento/ (accessed on 10 January 2022).
- ACI. Open Parco Veicoli. 2022. Available online: http://www.opv.aci.it/WEBDMCircolante/ (accessed on 22 January 2022).
- Unione petrolifera. Roadmap della Mobilità Sostenibile fino al 2030. 2016. Available online: http://www.unem.it/wp-content/uploads/2017/02/Allegato-3_Posizione-UP-su-Tavolo-mobilit%C3%A0-sostenibile.pdf (accessed on 19 January 2022).
- European Commission. Stepping Up Europe’s 2030 Climate Ambition Investing in a Climate-Neutral Future for the Benefit of Our People. 17 September 2020. Available online: https://ec.europa.eu/transparency/documents-register/detail?ref=SWD(2020)176&lang=en (accessed on 15 December 2021).
Fuel | EF |
---|---|
Electricity | 0.276 |
Diesel | 0.264 |
Gasoline | 0.265 |
Natural Gas (CNG) | 0.210 |
LPG | 0.190 |
Vehicle | Fuel | Consumption (MJ/km) |
---|---|---|
Toyota Prius Hybrid 2016 | HEV—Gasoline | 1.099 |
Toyota Yaris Hybrid 2020 | HEV—Gasoline | 1.055 |
Toyota Yaris Hybrid 2017 | Gasoline | 2.637 |
Toyota Auris 2017 | Diesel | 2.220 |
Nissan Leaf | BEV | 0.456 |
Veh. | Fuel | EURO | km | CO | NOx | VOC | CH4 | PM | GHG |
---|---|---|---|---|---|---|---|---|---|
Y20 | Hybrid-Gas. | 6d-temp | 2284 | 0.03815 | 0.01276 | 0.00078 | 0.00339 | 0.00014 | 77.3 |
P17 | Hybrid-Gas. | 6c | 1521 | 0.03226 | 0.01427 | 0.00070 | 0.00383 | 0.00014 | 107.7 |
Auris 17 | Diesel | 6a | 761 | 0.03057 | 0.45643 | 0.00097 | 0.00001 | 0.00014 | 174.2 |
Yaris 17 | Gasoline | 6a | 119 | 0.03790 | 0.51583 | 0.00114 | 0.00003 | 0.00014 | 209.1 |
Vehicle Size | EURO 0 | EURO 1 | EURO 2 | EURO 3 | EURO 4 | EURO 5 | EURO 6 | TOTAL |
---|---|---|---|---|---|---|---|---|
Small | 14,542 | 26,298 | 179,136 | 186,371 | 298,576 | 33,703 | 16,629 | 755,255 |
Medium | 2594 | 9321 | 85,279 | 182,641 | 204,635 | 60,773 | 62,985 | 608,228 |
Large | 889 | 1301 | 9514 | 27,950 | 28,644 | 13,407 | 14,991 | 96,696 |
TOTAL | 16,815 | 37,294 | 274,188 | 363,938 | 414,947 | 81,141 | 92,585 | 1,460,241 |
1.2% | 2.5% | 18.8% | 27.2% | 36.4% | 7.4% | 6.5% |
Year | Gasoline | Gasoline-LPG | Gasoline-CNG | Diesel | Gasoline-Electric | Diesel-Electric | Electric |
---|---|---|---|---|---|---|---|
2015 | 18,568,405 | 2,137,078 | 883,190 | 15,666,309 | 82,381 | 2967 | 4584 |
2016 | 18,360,105 | 2,211,368 | 904,947 | 16,260,625 | 117,433 | - | 5743 |
2017 | 18,196,563 | 2,309,020 | 926,704 | 16,896,736 | 174,087 | 3405 | 7560 |
2018 | 18,083,402 | 2,409,840 | 945,184 | 17,316,888 | 239,779 | 4705 | 12,156 |
2019 | 18,174,338 | 2,574,287 | 965,340 | 17,467,776 | 316,209 | 18,359 | 22,728 |
2020 | 18,072,495 | 2,678,656 | 978,832 | 17,385,843 | 501,868 | 40,860 | 53,079 |
2021 | 17,806,656 | 2,782,057 | 984,964 | 17,093,277 | 927,006 | 104,488 | 118,034 |
Fuel | R2 | a | b | c | d | e |
---|---|---|---|---|---|---|
Gasoline | 0.869 | - | 1.692 | −5.147 × 103 | 0.000 | 7.075 × 109 |
Gasoline–LPG | 0.993 | - | - | 3.648 × 103 | −1.461 × 107 | 1.463 × 1010 |
Gasoline-CNG | 0.997 | - | - | - | −1.460 × 10−1 | 3.596 × 106 |
Diesel | 0.963 | - | - | −1.019 × 105 | 4.117 × 108 | −4.156 × 1011 |
Gasoline–Electric | 0.997 | - | - | 3.115 × 104 | −1.256 × 108 | 1.266 × 1011 |
Diesel–Electric | 0.948 | - | - | 5.395 × 103 | −2.176 × 107 | 2.194 × 1010 |
Electric | 0.956 | - | 1.862 | −5.631 × 103 | 0.000 | 7.633 × 109 |
Fuel | 2021 | 2025 | Diff.% |
---|---|---|---|
Gasoline | 17,806,656 | 17,689,443 | −1% |
Gasoline–LPG | 2,782,057 | 3,391,021 | 22% |
Gasoline–CNG | 984,964 | 3,595,401 | 265% |
Diesel | 17,093,277 | 14,057,825 | −18% |
Gasoline–Electric | 927,006 | 2,600,110 | 180% |
Diesel–Electric | 104,488 | 366,938 | 251% |
Electric | 118,034 | 398,848 | 238% |
Fuel | 2010 | 2015 | 2016 | 2020 | 2025 | 2030 |
---|---|---|---|---|---|---|
Gasoline | 8980 | 7320 | 7380 | 7100 | 7000 | 6900 |
Diesel | 17,250 | 14,000 | 14,060 | 14,250 | 14,480 | 14,700 |
EURO | Gasoline | Gasoline-LPG | Gasoline-CNG | Diesel | Gasoline-Electric | Diesel-Electric | Electric | Total |
---|---|---|---|---|---|---|---|---|
E0 | 191,557 | 13,822 | 546 | 36,799 | 5 | 1 | - | 242,730 |
E1 | 41,219 | 3636 | 166 | 7834 | - | - | - | 52,855 |
E2 | 120,760 | 9328 | 423 | 33,766 | 1 | - | - | 164,278 |
E3 | 119,846 | 8292 | 572 | 131,635 | - | 3 | - | 260,348 |
E4 | 318,877 | 70,613 | 8097 | 288,821 | 555 | - | - | 686,963 |
E5 | 180,652 | 44,653 | 6326 | 239,824 | 5670 | 120 | - | 477,245 |
E6 | 348,862 | 96,898 | 7105 | 280,766 | 88,486 | 5090 | - | 827,207 |
NC | - | - | - | - | - | - | 10,805 | 10,805 |
Total | 1,321,773 | 247,242 | 23,235 | 1,019,445 | 94,717 | 5214 | 10,805 | 2,722,431 |
Fuel | Size | EURO 0 | EURO 1 | EURO 2 | EURO 3 | EURO 4 | EURO 5 | EURO 6 | NC |
---|---|---|---|---|---|---|---|---|---|
Gasoline | S | 134,151 | 21,331 | 71,903 | 73,148 | 178,464 | 155,753 | 477,005 | |
M | 39,700 | 13,791 | 23,253 | 12,034 | 20,743 | 10,335 | 53,316 | ||
L | 8311 | 2083 | 2949 | 2084 | 3527 | 1215 | 7877 | ||
Gasoline–LPG | S | 5847 | 931 | 1762 | 1351 | 9530 | 27,996 | 196,127 | |
M | 6582 | 2108 | 2056 | 845 | 1839 | 4801 | 35,691 | ||
L | 721 | 244 | 245 | 135 | 168 | 51 | 2327 | ||
Gasoline–CNG | S | 255 | 40 | 77 | 58 | 1018 | 4519 | 65,133 | - |
M | 243 | 98 | 97 | 99 | 285 | 128 | 12,001 | - | |
L | 22 | 12 | 10 | 4 | 20 | 7 | 681 | - | |
Diesel | S | 3613 | 145 | 167 | 5426 | 12,989 | 35,928 | 115,169 | |
M | 14,340 | 2998 | 8063 | 19,336 | 21,852 | 97,616 | 401,146 | ||
L | 10,840 | 2672 | 3866 | 5671 | 3968 | 11,552 | 61,051 | ||
Gasoline–Electric | S | - | - | - | - | 6 | 302 | 101,059 | |
M | 5 | - | - | - | 60 | 3775 | 143,044 | ||
L | 1 | - | - | 2 | 25 | 95 | 17,295 | ||
Diesel–Electric | S | - | - | - | - | - | - | 4 | |
M | - | - | - | - | - | 93 | 14,839 | ||
L | 1 | - | - | 2 | - | 19 | 3353 | ||
Electric | - | - | - | - | - | - | 35,811 |
Scenario | CO | VOC | NOX | NO2 | NH4 | PM | FC or NRPE | CO2 TTW | CO2 WTT | |
---|---|---|---|---|---|---|---|---|---|---|
1st | New fleet | 150 | 11 | 222 | 5 | 84 | 2 | 129,266 | 34,182 | 407,569 |
Avoided | 17,696 | 1574 | 2935 | 29 | 1074 | 157 | 105,015 | 27,815 | 331,107 | |
Av./tot (%) | 63.7% | 60.9% | 25.8% | 21.1% | 74.7% | 40.6% | 6.9% | 7.0% | 6.9% | |
2nd | New fleet | 271 | 27 | 552 | 13 | 116 | 5 | 254,014 | 67,135 | 800,894 |
Avoided | 19,432 | 1674 | 3873 | 35 | 1073 | 228 | 139,160 | 36,854 | 438,764 | |
Av./tot (%) | 70.0% | 64.7% | 34.1% | 25.3% | 74.7% | 59.0% | 9.1% | 9.3% | 9.1% | |
3rd | New fleet | 25,847 | 2415 | 9101 | 104 | 1407 | 178 | 1,480,791 | 382,190 | 4,508,527 |
Avoided | 1932 | 171 | 2268 | 36 | 30 | 209 | 40,226 | 14,131 | 287,163 | |
Av./tot (%) | 7.0% | 6.6% | 20.0% | 25.6% | 2.1% | 54.0% | 2.6% | 3.6% | 6.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cignini, F.; Alessandrini, A.; Ortenzi, F.; Orecchini, F.; Santiangeli, A.; Zuccari, F. Comparing the Sustainability of Different Powertrains for Urban Use. Electronics 2023, 12, 941. https://doi.org/10.3390/electronics12040941
Cignini F, Alessandrini A, Ortenzi F, Orecchini F, Santiangeli A, Zuccari F. Comparing the Sustainability of Different Powertrains for Urban Use. Electronics. 2023; 12(4):941. https://doi.org/10.3390/electronics12040941
Chicago/Turabian StyleCignini, Fabio, Adriano Alessandrini, Fernando Ortenzi, Fabio Orecchini, Adriano Santiangeli, and Fabrizio Zuccari. 2023. "Comparing the Sustainability of Different Powertrains for Urban Use" Electronics 12, no. 4: 941. https://doi.org/10.3390/electronics12040941
APA StyleCignini, F., Alessandrini, A., Ortenzi, F., Orecchini, F., Santiangeli, A., & Zuccari, F. (2023). Comparing the Sustainability of Different Powertrains for Urban Use. Electronics, 12(4), 941. https://doi.org/10.3390/electronics12040941