Non-Linear Adapted Spatio-Temporal Filter for Single-Trial Identification of Movement-Related Cortical Potential
Abstract
:1. Introduction
- 1.
- Whitening of the data was computed by singular value decomposition (SVD), which requires the test signal to be available; thus, the filter could not be applied in real time with the proposed implementation, but an alternative whitening is required, based only on training data;
- 2.
- Artifact removal was based on the estimation of independent components (ICs) from which the one representing the blinks was identified and removed; all data were included to estimate the ICs, whereas, in order to keep low the computational cost and allow for real time application, the filters extracting the artifacts should be defined only using training data and kept fixed when applied on new testing signals.
- 1.
- Delayed data are also used by the filter, so that filtering is applied both in time and space;
- 2.
- Simple non-linear functions (i.e., low order polynomials) are used;
- 3.
- The filters are ranked in terms of their accuracy in cross-validation on training data with respect to the orders of the temporal filter and of the polynomial non-linearity;
- 4.
- A majority voting on the best filters is finally used to process the test set.
2. Methods
2.1. Experimental Data
2.2. Signal Processing
2.2.1. Pre-Processing
2.2.2. Non-Linear Spatio-Temporal Filter
2.2.3. Performance Evaluation
- 1.
- The training data was reduced to the 40% of the MRCPs;
- 2.
- Only six channels were used, removing the electrodes F3, P4 and Fz (central channels were kept as they are the most important for MRCP detection; of the remaining channels, we removed one on the left hemisphere, another on the right hemisphere, and the last on the midline; the same choice was considered in [37]).
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BCI | brain computer interface |
CSP | common spatial pattern |
EEG | electroencephalogram |
ME | motor execution |
MI | motor imagination |
MRCP | movement related cortical potential |
NL-SF | non-linear optimized spatial filter |
NLSTF | non-linear spatio-temporal filter |
OSF | optimal spatial filter |
SVD | singular value decomposition |
References
- Guger, C.; Spataro, R.; Allison, B.Z.; Heilinger, A.; Ortner, R.; Cho, W.; La Bella, V. Complete Locked-in and Locked-in Patients: Command Following Assessment and Communication with Vibro-Tactile P300 and Motor Imagery Brain–Computer Interface Tools [Original Research]. Front. Neurosci. 2017, 11, 251. [Google Scholar] [CrossRef] [PubMed]
- Shahriari, Y.; Vaughan, T.M.; McCane, L.M.; Allison, B.Z.; Wolpaw, J.R.; Krusienski, D.J. An exploration of BCI performance variations in people with amyotrophic lateral sclerosis using longitudinal EEG data. J. Neural Eng. 2019, 16, 056031. [Google Scholar] [CrossRef] [PubMed]
- Strandgaard, S.; Paulson, O. Pathophysiology of stroke. J. Cardiovasc. Pharmacol. 1990, 15, S38–S42. [Google Scholar] [CrossRef]
- Alcaide-Aguirre, R.E.; Warschausky, S.A.; Brown, D.; Aref, A.; Huggins, J.E. Asynchronous brain–computer interface for cognitive assessment in people with cerebral palsy. J. Neural Eng. 2017, 14, 066001. [Google Scholar] [CrossRef] [PubMed]
- Rezeika, A.; Benda, M.; Stawicki, P.; Gembler, F.; Saboor, A.; Volosyak, I. Brain–Computer Interface Spellers: A Review. Brain Sci. 2018, 8, 57. [Google Scholar] [CrossRef] [Green Version]
- Hanagasi, H.A.; Gurvit, I.H.; Ermutlu, N.; Kaptanoglu, G.; Karamursel, S.; Idrisoglu, H.A.; Emre, M.; Demiralp, T. Cognitive impairment in amyotrophic lateral sclerosis: Evidence from neuropsychological investigation and event-related potentials. Cogn. Brain Res. 2022, 14, 234–244. [Google Scholar] [CrossRef]
- Wolpaw, J.R.; Birbaumer, N.; McFarland, D.J.; Pfurtscheller, G.; Vaughan, T.M. Brain–computer interfaces for communication and control. Clin. Neurophysiol. 2002, 113, 767–791. [Google Scholar] [CrossRef]
- Kuhlman, W.N. EEG feedback training of epileptic patients: Clinical and electroencephalographic analysis. Electroencephalogr. Clin. Neurophysiol. 1978, 45, 699–710. [Google Scholar] [CrossRef]
- Rice, K.M.; Blanchard, E.B.; Purcell, M. Biofeedback treatments of generalized anxiety disorder: Preliminary results. Biofeedback Self-Regul. 1993, 18, 93–105. [Google Scholar] [CrossRef]
- Sterman, M.B. Basic concepts and clinical findings in the treatment of seizure disorders with EEG operant conditioning. Clin. Electroencephalogr. 2000, 31, 45–55. [Google Scholar] [CrossRef]
- Gu, Y.; Farina, D.; Murguialday, A.R.; Dremstrup, K.; Birbaumer, N. Comparison of movement related cortical potential in healthy people and amyotrophic lateral sclerosis patients. Front. Neurosci. 2013, 7, 65. [Google Scholar] [CrossRef] [Green Version]
- Kamavuako, E.N.; Jochumsen, M.; Niazi, I.K.; Dremstrup, K. Comparison of Features for Movement Prediction from Single-Trial Movement-Related Cortical Potentials in Healthy Subjects and Stroke Patients. Comput. Intell. Neurosci. 2015, 2015, 858015. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Sankar, R.; Arbel, Y.; Donchin, E. Single trial independent component analysis for P300 BCI system. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Minneapolis, MN, USA, 3–6 September 2009. [Google Scholar]
- Wirth, C.; Dockree, P.M.; Harty, S.; Lacey, E.; Arvaneh, M. Towards error categorisation in BCI: Single-trial EEG classification between different errors. J. Neural Eng. 2020, 17, 016008. [Google Scholar] [CrossRef]
- Kita, Y.; Mori, A.; Nara, M. Two types of movement-related cortical potentials preceding wrist extension in humans. Neuroreport 2001, 12, 2221–2225. [Google Scholar] [CrossRef]
- MacKinnon, C.D. Recordings of movement-related potentials combined with PET, fMRI or MEG. In The Bereitschaftspotential; Springer: New York, NY, USA, 2003; pp. 95–111. [Google Scholar]
- Li, H.; Huang, G.; Lin, Q.; Zhao, J.L.; Lo, W.A.; Mao, Y.R.; Chen, L.; Zhang, Z.G.; Huang, D.F.; Li, L. Combining Movement-Related Cortical Potentials and Event-Related Desynchronization to Study Movement Preparation and Execution. Front. Neurol. 2018, 9, 822. [Google Scholar] [CrossRef] [Green Version]
- Olsen, S.; Alder, G.; Williams, M.; Chambers, S.; Jochumsen, M.; Signal, N.; Rashid, U.; Niazi, I.K.; Taylor, D. Electroencephalographic Recording of the Movement-Related Cortical Potential in Ecologically Valid Movements: A Scoping Review [Review]. Front. Neurosci. 2021, 15, 721387. [Google Scholar] [CrossRef]
- Niazi, I.K.; Jiang, N.; Tiberghien, O.; Nielsen, J.F.; Dremstrup, K.; Farina, D. Detection of movement intention from single-trial movement-related cortical potentials. J. Neural Eng. 2011, 8, 066009. [Google Scholar] [CrossRef]
- Shibasaki, H.; Barrett, G.; Halliday, E.; Halliday, A. Components of the movement-related cortical potential and their scalp topography. Electroencephalogr. Clin. Neurophysiol. 1980, 49, 213–226. [Google Scholar] [CrossRef]
- Jochumsen, M.; Niazi, I.K.; Mrachacz-Kersting, N.; Farina, D.; Dremstrup, K. Detection and classification of movement-related cortical potentials associated with task force and speed. J. Neural Eng. 2013, 10, 056015. [Google Scholar] [CrossRef]
- Kim, J.-H.; Bießmann, F.; Lee, S.-W. Decoding three-dimensional trajectory of executed and imagined arm movements from electroencephalogram signals. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 867–876. [Google Scholar] [CrossRef]
- van Dokkum, L.E.H.; Ward, T.; Laffont, I. Brain computer interfaces for neurorehabilitation—Its current status as a rehabilitation strategy post-stroke. Ann. Phys. Rehabil. Med. 2015, 58, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karimi, F.; Kofman, J.; Mrachacz-Kersting, N.; Farina, D.; Jiang, N. Detection of Movement Related Cortical Potentials from EEG Using Constrained ICA for Brain–Computer Interface Applications. Front. Neurosci. 2017, 11, 356. [Google Scholar] [CrossRef] [Green Version]
- Hassan, A.; Ghani, U.; Riaz, F.; Rehman, S.; Jochumsen, M.; Taylor, D.; Niazi, I. Using a Portable Device for Online Single-Trial MRCP Detection and Classification. In Intelligent Data Engineering and Automated Learning—IDEAL 2015; Jackowski, K., Burduk, R., Walkowiak, K., Wozniak, M., Yin, H., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2015; Volume 9375. [Google Scholar]
- McFarland, D.J.; McCane, L.M.; David, S.V.; Wolpaw, J.R. Spatial filter selection for EEG-based communication. Electroencephalogr. Clin. Neurophysiol. 1997, 103, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Blankertz, B.; Tomioka, R.; Lemm, S.; Kawanabe, M.; Muller, K.R. Optimizing Spatial filters for Robust EEG Single-Trial Analysis. IEEE Signal Process. Mag. 2008, 25, 41–56. [Google Scholar] [CrossRef]
- Bell, A.J.; Sejnowski, T.J. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 1995, 7, 1129–1159. [Google Scholar] [CrossRef]
- Pfurtscheller, G.; Neuper, C. Motor imagery and direct brain–Computer communication. Proc. IEEE 2001, 89, 1123–1134. [Google Scholar] [CrossRef]
- Ramos-Murguialday, A.; Broetz, D.; Rea, M.; Laer, L.; Yilmaz, O.; Brasil, F.L.; Liberati, G.; Curado, M.R.; Garcia-Cossio, E.; Vyziotis, A.; et al. Brain-machine interface in chronic stroke rehabilitation: A controlled study. Ann. Neurol 2013, 74, 100–108. [Google Scholar] [CrossRef] [Green Version]
- McFarland, D.J.; Miner, L.A.; Vaughan, T.M.; Wolpaw, J.R. Mu and beta rhythm topographies during motor imagery and actual movements. Brain Topogr. 2000, 12, 177–186. [Google Scholar] [CrossRef]
- Delorme, A.; Sejnowski, T.; Makeig, S. Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage 2007, 34, 1443–1449. [Google Scholar] [CrossRef] [Green Version]
- Shakeel, A.; Navid, M.S.; Anwar, M.N.; Mazhar, S.; Jochumsen, M.; Niazi, I.K. A Review of Techniques for Detection of Movement Intention Using Movement-Related Cortical Potentials. Comput. Math. Methods Med. 2015, 2015, 346217. [Google Scholar] [CrossRef] [Green Version]
- Daly, J.J.; Wolpaw, J.R. Brain–Computer interfaces in neurological rehabilitation. Lancet Neurol. 2008, 7, 1032–1043. [Google Scholar] [CrossRef]
- Makeig, S.; Debener, S.; Onton, J.; Delorme, A. Mining event-related brain dynamics. Trends Cogn. Sci. 2004, 8, 204–210. [Google Scholar] [CrossRef] [Green Version]
- Winkler, I.; Brandl, S.; Horn, F.; Waldburger, E.; Allefeld, C.; Tangermann, M. Robust artifactual independent component classification for BCI practitioners. J. Neural Eng. 2004, 11, 035013. [Google Scholar] [CrossRef] [Green Version]
- Mascolini, A.; Niazi, I.K.; Mesin, L. Non-linear optimized spatial filter for single-trial identification of movement related cortical potential. Biocybern. Biomed. Eng. 2022, 42, 426–436. [Google Scholar]
- De Lathauwer, L.; Castaing, J. Second-Order Blind Identification of Underdetermined Mixtures. In Independent Component Analysis and Blind Signal Separation; Rosca, J., Erdogmus, D., Príncipe, J.C., Haykin, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 40–47. [Google Scholar]
- Sevcik, C. A procedure to Estimate the Fractal Dimension of Waveforms. Complex. Int. 2018, 5, 1–19. [Google Scholar]
- Gomez-Herrero, G.; Clercq, W.D.; Anwar, H.; Kara, O.; Egiazarian, K.; Huffel, S.V.; Paesschen, W.V. Automatic Removal of Ocular Artifacts in the EEG without an EOG Reference Channel. In Proceedings of the 7th Nordic Signal Processing Symposium, Reykjavik, Iceland, 7–9 June 2006; pp. 130–133. [Google Scholar]
- Jochumsen, M.; Knoche, H.; Kjaer, T.W.; Dinesen, B.; Kidmose, P. EEG Headset Evaluation for Detection of Single-Trial Movement Intention for Brain–Computer Interfaces. Sensors 2020, 20, 2804. [Google Scholar] [CrossRef]
- Hochberg, L.R.; Serruya, M.D.; Friehs, G.M.; Mukand, J.A.; Saleh, M.; Caplan, A.H.; Branner, A.; Chen, D.; Penn, R.D.; Donoghue, J.P. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 2006, 442, 164–171. [Google Scholar] [CrossRef]
- Behboodi, A.; Lee, W.A.; Bulea, T.C.; Damiano, D.L. Evaluation of Multi-layer Perceptron Neural Networks in Predicting Ankle Dorsiflexion in Healthy Adults using Movement-related Cortical Potentials for BCI-Neurofeedback Applications. In Proceedings of the IEEE International Conference on Rehabilitation Robotics (ICORR), Rotterdam, The Netherlands, 25–29 July 2022; pp. 1–5. [Google Scholar]
- Jochumsen, M.; Niazi, I.K. Detection and classification of single-trial movement-related cortical potentials associated with functional lower limb movements. J. Neural Eng. 2020, 17, 035009. [Google Scholar] [CrossRef]
- Liu, T.; Huang, G.; Jiang, N.; Yao, L.; Zhang, Z. Reduce brain computer interface inefficiency by combining sensory motor rhythm and movement-related cortical potential features. J. Neural Eng. 2020, 17, 035003. [Google Scholar] [CrossRef]
- Pereira, J.; Kobler, R.; Ofner, P.; Schwarz, A.; Muller-Putz, G.R. Online detection of movement during natural and self-initiated reach-and-grasp actions from EEG signals. J. Neural Eng. 2021, 18, 046095. [Google Scholar] [CrossRef]
- Kaeseler, R.L.; Johansson, T.W.; Struijk, L.N.S.A.; Jochumsen, M. Feature and Classification Analysis for Detection and Classification of Tongue Movements From Single-Trial Pre-Movement EEG. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 678–687. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Jiang, N.; Vuckovic, A.; Hasan, M.; Mrachacz-Kersting, N.; Allan, D.; Fraser, M.; Nasseroleslami, B.; Conway, B.; Dremstrup, K.; et al. Movement-related cortical potentials in paraplegic patients: Abnormal patterns and considerations for BCI-rehabilitation. Front. Neuroeng. 2014, 7, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, R.; Jiang, N.; Lin, C.; Mrachacz-Kersting, N.; Dremstrup, K.; Farina, D. Enhanced low-latency detection of motor intention from EEG for closed-loop brain–Computer interface applications. IEEE Trans. Biomed. Eng. 2014, 61, 288–296. [Google Scholar] [PubMed] [Green Version]
- Barachant, A.; Bonnet, S.; Congedo, M.; Jutten, C. Riemannian geometry applied to BCI classification. In Proceedings of the 9th International Conference Latent Variable Analysis and Signal Separation, St. Malo, France, 27–30 September 2010; pp. 629–636. [Google Scholar]
- Jochumsen, M.; Niazi, I.K.; Mrachacz-Kersting, N.; Jiang, N.; Farina, D.; Dremstrup, K. Comparison of spatial filters and features for the detection and classification of movement-related cortical potentials in healthy individuals and stroke patients. J. Neural Eng. 2015, 12, 056003. [Google Scholar] [CrossRef]
- Grosse-Wentrup, M.; Mattia, D.; Oweiss, K. Using brain–Computer interfaces to induce neural plasticity and restore function. J. Neural Eng. 2011, 8, 025004. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mesin, L.; Ghani, U.; Niazi, I.K. Non-Linear Adapted Spatio-Temporal Filter for Single-Trial Identification of Movement-Related Cortical Potential. Electronics 2023, 12, 1246. https://doi.org/10.3390/electronics12051246
Mesin L, Ghani U, Niazi IK. Non-Linear Adapted Spatio-Temporal Filter for Single-Trial Identification of Movement-Related Cortical Potential. Electronics. 2023; 12(5):1246. https://doi.org/10.3390/electronics12051246
Chicago/Turabian StyleMesin, Luca, Usman Ghani, and Imran Khan Niazi. 2023. "Non-Linear Adapted Spatio-Temporal Filter for Single-Trial Identification of Movement-Related Cortical Potential" Electronics 12, no. 5: 1246. https://doi.org/10.3390/electronics12051246