A Broadband Analog Predistortion Linearizer Based on GaAs MMIC for Ka-Band TWTAs
Abstract
:1. Introduction
2. Analog Predistortion MMIC Topology
2.1. Predistortion Circuit Topology
2.2. Nonlinear Device Size Selection
3. Independently Tunable Linearizer and Nonlinear Frequency Adjustment Module Design of Analog Predistortion MMIC
3.1. Independently Tunable Linearizer Design for Improved Nonlinear Indices
3.1.1. Gain and Phase Nonlinear Branch Design
3.1.2. Independently Tunable Linearizer Mechanism Analysis
3.1.3. Simulation for the Independent Tuning of Gain and Phase Expansion
3.2. Nonlinear Frequency Adjustment Module Design for Broadband Application
3.2.1. Nonlinear Frequency Adjustment Module Design Principle
3.2.2. Simulation of the NFAM Effect
4. Experimental Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Katz, A.; Gray, R.; Dorval, R. Linearizers for Q- and V-Band TWTAs. IEEE Trans. Electron Devices 2018, 65, 2317–2377. [Google Scholar] [CrossRef]
- Gupta, A.; Jha, E.R.K. A survey of 5G network: Architecture and emerging technologies. IEEE Access 2015, 3, 1206–1232. [Google Scholar] [CrossRef]
- Guan, L.; Zhu, A. Green communications: Digital predistortion for wideband RF power amplifiers. IEEE Microw. Mag. 2014, 15, 84–99. [Google Scholar] [CrossRef] [Green Version]
- Xi, T.; Huang, S.; Guo, S.; Gui, P.; Huang, D.; Chak, S. High-efficiency E-band power amplifiers and transmitter using gate capacitance linearization in a 65-nm CMOS process. IEEE Trans. Circuits Syst. II Exp. Briefs 2017, 64, 234–238. [Google Scholar] [CrossRef]
- Shi, B.; Leong, S.W.; Zhai, G.; Wang, W.; Luo, B. Development of Ka-band BUC with wideband linearizer for high speed satellite communications. In Proceedings of the IEEE Global Communications Conference (GLOBECOM), Singapore, 4–8 December 2017; pp. 1–6. [Google Scholar]
- Cai, Q.; Che, W.Q.; Ma, K.X.; Zhang, M. A simplified transistor based analog predistorter for a GaN power amplifier. IEEE Trans. Circuits Syst. II Exp. Briefs 2018, 5, 326–330. [Google Scholar] [CrossRef]
- Zhang, H.; Sánchez-Sinencio, E. Linearization techniques for CMOS low noise amplifiers: A tutorial. IEEE Trans. Circuits Syst. I 2011, 58, 22–36. [Google Scholar] [CrossRef]
- Shen, Y.; Hraimel, B.; Zhang, X.; Cowan, G.; Wu, K.; Liu, T. A novel analog broadband RF predistortion circuit to linearize electro-absorption modulators in multiband OFDM radio-over-fiber systems. IEEE Trans. Microw. Theory Tech. 2010, 58, 3327–3335. [Google Scholar] [CrossRef]
- Katz, A.; Wood, J.; Chokola, D. The Evolution of PA Linearization. IEEE Microw. Mag. 2016, 17, 32–40. [Google Scholar] [CrossRef]
- Li, C.; He, S.; You, F.; Peng, J.; Hao, P. Analog Predistorter Averaged Digital Predistortion for Power Amplifiers in Hybrid Beam-Forming Multi-Input Multi-Output Transmitter. IEEE Access 2020, 8, 146145–146153. [Google Scholar] [CrossRef]
- Park, C.-W.; Beauregard, F.; Carangelo, G.; Ghannouchi, F.M. An independently controllable AM/AM and AM/PM predistortion linearizer for CDMA 2000 multicarrier applications. In Proceedings of the IEEE Radio Wireless Conference, Phoenix, AZ, USA, 19–22 August 2001; pp. 53–56. [Google Scholar]
- Deng, H.; Zhang, D.; Lv, D.; Zhou, D.; Zhang, Y. Analog Predistortion Linearizer with Independently Tunable Gain and Phase Conversions for Ka-Band TWTA. IEEE Trans. Electron Devices 2019, 66, 1533–1539. [Google Scholar] [CrossRef]
- Deng, H.; Lv, D.; Zhang, Y.; Zhang, D.; Zhou, D. Compact Analog Predistorter with Shape Tuning Capability Using Power-Dependent Impedance Matching Network. IEEE Trans. Circuits Syst. II Express Briefs 2020, 67, 1705–1709. [Google Scholar] [CrossRef]
- Zhang, W.-M.; Yuen, C. A Broadband Linearizer for Ka-Band Satellite Communication. In Proceedings of the 51st ARFTG Conference Digest, Baltimore, MD, USA, 12 June 1998; pp. 1203–1206. [Google Scholar]
- Villemazet, J.-F.; Yahi, H.; Lefebvre, B.; Baudeigne, F.; Maynard, J.; Soubercaze-Pun, G.; Lapierre, L. New Ka-Band Analog Predistortion Linearizer allowing a 2.9 GHz Instantaneous Wideband Satellite Operation. In Proceedings of the 47th European Microwave Conference, Nuremberg, Germany, 8–10 October 2017; pp. 1042–1045. [Google Scholar]
- Hao, P.; He, S.; You, F.; Li, C. Independently Tunable Linearizer Based on Characteristic Self-Compensation of Amplitude and Phase. IEEE Access 2019, 7, 131188–131200. [Google Scholar] [CrossRef]
- Iommi, R.; Macchiarella, G.; Meazza, A.; Pagan, M. Study of an Active Predistorter Suitable for MMIC Implementation. IEEE Trans. Microw. Theory Techn. 2005, 53, 874–880. [Google Scholar] [CrossRef]
- Gavell, M.; Granström, G.; Fager, C.; Sten, E.; Zirath, H. An E-Band Analog Predistorter and Power Amplifier MMIC Chipset. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 31–33. [Google Scholar] [CrossRef]
- Tsai, J.-H.; Chang, H.-Y.; Wu, P.-S.; Lee, Y.-L.; Wang, H. Design and Analysis of a 44-GHz MMIC Low-Loss Built-In Linearizer for High-Linearity Medium Power Amplifiers. IEEE Trans. Microw. Theory Techn. 2006, 54, 2487–2496. [Google Scholar] [CrossRef]
- Yamauchi, K.; Nakayama, M.; Ikeda, Y.; Araki, T. An 18GHz Band MMIC Linearizer Using Parallel Diode with a Bias Feed Resistance and a Parallel Capacitor. In Proceedings of the 2000 IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA, 11–16 June 2000; pp. 1507–1510. [Google Scholar]
- Potschka, J.; Dietz, M.; Kolb, K.; Maiwald, T.; Weigel, R. A Highly Linear and Efficient 28 GHz Stacked Power Amplifier for 5G using Analog Predistortion in a 130 nm BiCMOS Process. In Proceedings of the IEEE Asia-Pacific Microwave Conference (APMC), Singapore, 10–13 December 2019; pp. 920–922. [Google Scholar]
- Nguyen, D.P.; Nguyen, N.L.K.; Stameroff, A.N.; Camarchia, V.; Pham, A.-V. A Wideband Highly Linear Distributed Amplifier Using Intermodulation Cancellation Technique for Stacked-HBT Cell. IEEE Trans. Microw. Theory Techn. 2020, 68, 2984–2997. [Google Scholar] [CrossRef]
- Zhao, J.; Cooman, A.; Shamsafar, A.; Rousstia, M.; Calzona, D.; Pires, S. A High-Linear Ka-Band Power Amplifier with Diode-Based Analogue Predistortion. In Proceedings of the 15th European Microwave Integrated Circuits Conference, Utrecht, The Netherlands, 10–15 January 2021; pp. 157–160. [Google Scholar]
- Xie, X.; Xu, Y.; Xia, L. Microwave Integrated Circuit, 1st ed.; Electronics Industry Press: Beijing, China, 2018; pp. 241–243. [Google Scholar]
- Haris, N.; Kyabaggu, P.B.K.; Alim, M.A.; Zhang, Y.; Rezazadeh, A.A. Device Considerations and Characterisations of Double-Channel GaAs pHEMT Schottky Diodes for Limiter Applications. In Proceedings of the 10th European Microwave Integrated Circuits Conference, Paris, France, 7–8 September 2015; pp. 219–222. [Google Scholar]
- Huang, H.; Huang, J.; Shi, Q. A parameter extraction method of the Schottky diode millimeter wave equivalent circuit model. J. Infrared Millim. Waves 2021, 40, 32–737. [Google Scholar]
- Yamauchi, K.; Mori, K.; Nakayama, M.; Mitsui, Y.; Takagi, T. A microwave miniaturized linearizer using a parallel diode with a bias feed resistance. IEEE Trans. Microw. Theory Techn. 1997, 45, 2431–2435. [Google Scholar] [CrossRef]
- Jeong, H.-Y.; Park, S.-K.; Ryu, N.-S.; Jeong, Y.-C.; Yom, I.-B.; Kim, Y. A Design of K-band Predistortion Linearizer using Reflective Schottky Diode for Satellite TWTAs. In Proceedings of the 13th GAAS Symposium, Paris, France, 4–6 October 2005; pp. 597–600. [Google Scholar]
Diode Size | (pA) | (Ω) | n |
---|---|---|---|
One-finger 10 μm | 7.91 | 0.15 | 1.37 |
Two-finger 20 μm | 28.92 | 0.11 | 1.37 |
Four-finger 40 μm | 93.91 | 0.09 | 1.37 |
Reference | Operating Band | Signal Bandwidth | C/IM3 or ACPR Improvement | Independently Tunable | Co-Design with PA | Size | Technique |
---|---|---|---|---|---|---|---|
[12] | 29~31 GHz | N/A | 9@3 dB OPBO(C/IM3) | Yes | No | 28.5 × 31.4 mm2 | HMIC 2 |
[13] | 5.5~5.8 GHz | N/A | 13@3 dB OPBO(C/IM3) | Yes | No | N/A | HMIC |
[16] | 3.4~3.6 GHz | 55 MHz | 8.4@6 dB OPBO(ACPR 1) | Yes | No | N/A | HMIC |
[19] | 40~50 GHz | 1 MHz | 8@3 dB OPBO(ACPR) | No | Yes | 2.0 × 1.0 mm2 | MMIC |
[22] | DC~90 GHz | N/A | 9@3 dB OPBO(C/IM3) | No | Yes | 1.6 × 0.7 mm2 | MMIC |
This work | 25.1~27.5 GHz | 500 MHz | 10@3 dB OPBO(C/IM3) | Yes | No | 2.0 × 1.6 mm2 | MMIC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, T.; Su, X.; Wang, G.; Zhao, B.; Fu, R.; Zhu, D. A Broadband Analog Predistortion Linearizer Based on GaAs MMIC for Ka-Band TWTAs. Electronics 2023, 12, 1503. https://doi.org/10.3390/electronics12061503
Liu T, Su X, Wang G, Zhao B, Fu R, Zhu D. A Broadband Analog Predistortion Linearizer Based on GaAs MMIC for Ka-Band TWTAs. Electronics. 2023; 12(6):1503. https://doi.org/10.3390/electronics12061503
Chicago/Turabian StyleLiu, Ting, Xiaobao Su, Gang Wang, Bin Zhao, Rui Fu, and Dan Zhu. 2023. "A Broadband Analog Predistortion Linearizer Based on GaAs MMIC for Ka-Band TWTAs" Electronics 12, no. 6: 1503. https://doi.org/10.3390/electronics12061503
APA StyleLiu, T., Su, X., Wang, G., Zhao, B., Fu, R., & Zhu, D. (2023). A Broadband Analog Predistortion Linearizer Based on GaAs MMIC for Ka-Band TWTAs. Electronics, 12(6), 1503. https://doi.org/10.3390/electronics12061503