Thermal Performance of Cu Electroplated GaN/AlGaN High-Electron-Mobility Transistors with Various-Thickness Si Substrates
Abstract
:1. Introduction
2. Experimental Details
2.1. HEMT Device Fabrication
2.2. Electroplating of Cu on Backside of HEMT Device
3. Results
3.1. Electrical Characteristics of HEMT Devices with and without Electroplated Cu
3.2. Impact of BSP on Thermal Dissipation in HEMT Devices
3.3. Raman Spectra of HEMT Devices with and without Electroplated Cu
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vetury, R.; Zhang, N.Q.; Keller, S.; Mishra, U.K. The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs. IEEE Trans. Electron Devices 2001, 48, 560–566. [Google Scholar] [CrossRef]
- Trew, R.J.; Shin, M.W.; Gatto, V. Wide bandgap semiconductor electronic devices for high frequency applications. In Proceedings of the GaAs IC Symposium IEEE Gallium Arsenide Integrated Circuit Symposium 18th Annual Technical Digest, Orlando, FL, USA, 3–6 November 1996; pp. 6–9. [Google Scholar]
- Hudgins, J.; Simin, G.; Santi, E.; Khan, M. An assessment of wide bandgap semiconductors for power devices. IEEE Trans. Power Electron. 2003, 18, 907–914. [Google Scholar] [CrossRef]
- Nakamura, S.; Senoh, M.; Nagahama, S.-I.; Iwasa, N.; Yamada, T.; Matsushita, T.; Kiyoku, H.; Sugimoto, Y.; Kozaki, T.; Umemoto, H.; et al. InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally over-grown GaN substrate. Appl. Phys. Lett. 1998, 72, 211–213. [Google Scholar] [CrossRef]
- Khan, A.M.; Kuznia, J.N.; Olson, D.T.; Schaff, W.J.; Burm, J.W.; Shur, M.S. Microwave performance of a 0.25 μm gate AlGaN/GaN heterostructure field effect transistor. Appl. Phys. Lett. 1994, 65, 1121–1123. [Google Scholar] [CrossRef]
- Ambacher, O.; Foutz, B.; Smart, J.; Shealy, J.R.; Weimann, N.G.; Chu, K.; Murphy, M.; Sierakowski, A.J.; Schaff, W.J.; Eastman, L.F.; et al. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN het-erostructures. J. Appl. Phys. 1999, 87, 334–344. [Google Scholar] [CrossRef]
- Fletcher, A.A.; Nirmal, D. A survey of Gallium Nitride HEMT for RF and high power applications. Superlattices Microstruct. 2017, 109, 519–537. [Google Scholar] [CrossRef]
- Mishra, U.K.; Parikh, P.; Wu, Y.-F. AlGaN/GaN HEMTs-an overview of device operation and applications. Proc. IEEE 2002, 90, 1022–1031. [Google Scholar] [CrossRef]
- Levinshtein, M.E.; Rumyantsev, S.L.; Shur, M.S. Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Fletcher, A.A.; Nirmal, D.; Ajayan, J.; Arivazhagan, L. Analysis of AlGaN/GaN HEMT using discrete field plate technique for high power and high frequency applications. AEU Int. J. Electron. Commun. 2018, 99, 325–330. [Google Scholar] [CrossRef]
- Wang, Z. Proposal of a novel recess-free enhancement-mode AlGaN/GaN HEMT with field-assembled structure: A simulation study. J. Comput. Electron. 2019, 18, 1251–1258. [Google Scholar] [CrossRef]
- Wang, P.; Deng, C.; Cheng, H.; Cheng, W.; Du, F.; Tang, C.; Geng, C.; Tao, N.; Wang, Q.; Yu, H. Simulation of High Breakdown Voltage, Improved Current Collapse Suppression, and Enhanced Frequency Response AlGaN/GaN HEMT Using a Double Floating Field Plate. Crystals 2023, 13, 110. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Z.; Zhang, Z.; Yang, D.; Yao, Y. On the Baliga’s Figure-Of-Merits (BFOM) Enhancement of a Novel GaN Nano-Pillar Vertical Field Effect Transistor (FET) with 2DEG Channel and Patterned Substrate. Nanoscale Res. Lett. 2019, 14, 128. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Feng, S.; Li, X.; Bai, K.; Lu, X.; Zhu, J.; Zhang, Y.; Zhou, L. Identification of Traps in p-GaN Gate HEMTs During OFF-State Stress by Current Transient Method. IEEE Trans. Elec. Dev. 2022, 69, 4877–4882. [Google Scholar] [CrossRef]
- Fernández, E.F.; Ferrer-Rodríguez, J.P.; Almonacid, F.; Pérez-Higueras, P. Current-voltage dynamics of multi-junction CPV modules under different irradiance levels. Sol. Energy 2017, 155, 39–50. [Google Scholar] [CrossRef]
- Aguilar-Jiménez, J.A.; Velázquez, N.; Acuña, A.; López-Zavala, R.; González-Uribe, L.A. Effect of orientation of a CPC with concentric tube on efficiency. Appl. Therm. Eng. 2018, 130, 221–229. [Google Scholar] [CrossRef]
- Theristis, M.; Fernández, E.F.; Sumner, M.; O’Donovan, T.S. Multiphysics modelling and experimental validation of high concentration photovoltaic modules. Energy Convers. Manag. 2017, 139, 122–134. [Google Scholar] [CrossRef]
- Vitanov, S.; Palankovski, V.; Maroldt, S.; Quay, R. High-temperature modeling of AlGaN/GaN HEMTs. Solid-State Electron. 2010, 54, 1105–1112. [Google Scholar] [CrossRef]
- Wang, X.-D.; Hu, W.-D.; Chen, X.-S.; Lu, W. The Study of Self-Heating and Hot-Electron Effects for AlGaN/GaN Double-Channel HEMTs. IEEE Trans. Electron Devices 2012, 59, 1393–1401. [Google Scholar] [CrossRef]
- Saidi, I.; Gassoumi, M.; Maaref, H.; Mejri, H.; Gaquière, C. Self-heating and trapping effects in AlGaN/GaN heterojunction field-effect transistors. J. Appl. Phys. 2009, 106, 054511. [Google Scholar] [CrossRef]
- Turin, V.; Balandin, A. Performance degradation of GaN field-effect transistors due to thermal boundary resistance at GaN∕substrate interface. Electron. Lett. 2004, 40, 81–83. [Google Scholar] [CrossRef]
- Goyal, V.; Subrina, S.; Nika, D.L.; Balandin, A.A. Reduced thermal resistance of the silicon-synthetic diamond composite substrates at elevated temperatures. Appl. Phys. Lett. 2010, 97, 031904. [Google Scholar] [CrossRef]
- Slack, G.A. Thermal Conductivity of Pure and Impure Silicon, Silicon Carbide, and Diamond. J. Appl. Phys. 1964, 35, 3460–3466. [Google Scholar] [CrossRef]
- Kidalov, S.V.; Shakhov, F.M. Thermal Conductivity of Diamond Composites. Materials 2009, 2, 2467–2495. [Google Scholar] [CrossRef]
- Sun, J.; Fatima, H.; Koudymov, A.; Chitnis, A.; Hu, X.; Wang, H.-M.; Zhang, J.; Simin, G.; Yang, J.; Khan, M.A.; et al. Thermal management of AlGaN-GaN HFETs on sapphire using flip-chip bonding with epoxy underfill. IEEE Electron Device Lett. 2003, 24, 375–377. [Google Scholar] [CrossRef]
- Hiroki, M.; Kumakura, K.; Kobayashi, Y.; Akasaka, T.; Makimoto, T.; Yamamoto, H. Suppression of self-heating effect in AlGaN/GaN high electron mobility transistors by substrate-transfer technology using h-BN. Appl. Phys. Lett. 2014, 105, 193509. [Google Scholar] [CrossRef]
- Ji, H.; Das, J.; Germain, M.; Kuball, M. Laser lift-off transfer of AlGaN/GaN HEMTs from sapphire onto Si: A thermal perspective. Solid-State Electron. 2009, 53, 526–529. [Google Scholar] [CrossRef]
- Tadjer, M.J.; Anderson, T.J.; Hobart, K.D.; Feygelson, T.I.; Caldwell, J.D.; Eddy, C.R.; Kub, F.J.; Butler, J.E.; Pate, B.; Melngailis, J. Reduced Self-Heating in AlGaN/GaN HEMTs Using Nanocrystalline Diamond Heat-Spreading Films. IEEE Electron. Device Lett. 2011, 33, 23–25. [Google Scholar] [CrossRef]
- Tadjer, M.J.; Anderson, T.J.; Feygelson, T.I.; Hobart, K.D.; Hite, J.K.; Koehler, A.D.; Wheeler, V.D.; Pate, B.B.; Eddy, C.R.; Kub, F.J. Nanocrystalline diamond capped AlGaN/GaN high electron mobility transistors via a sacrificial gate process. Phys. Status Solidi A 2016, 213, 893–897. [Google Scholar] [CrossRef]
- Srivastava, P.; Das, J.; Visalli, D.; Van Hove, M.; Malinowski, P.E.; Marcon, D.; Lenci, S.; Geens, K.; Cheng, K.; Leys, M.; et al. Record Breakdown Voltage (2200 V) of GaN DHFETs on Si With 2-μm Buffer Thickness by Local Substrate Removal. IEEE Electron. Device Lett. 2011, 30, 30–32. [Google Scholar] [CrossRef]
- Visalli, D.; Van Hove, M.; Derluyn, J.; Srivastava, P.; Marcon, D.; Das, J.; Leys, M.R.; Degroote, S.; Cheng, K.; Vandenplas, E.; et al. Limitations of Field Plate Effect Due to the Silicon Substrate in AlGaN/GaN/AlGaN DHFETs. IEEE Trans. Electron. Devices 2010, 57, 3333–3339. [Google Scholar] [CrossRef]
- Pavlidis, G.; Kim, S.H.; Abid, I.; Zegaoui, M.; Medjdoub, F.; Graham, S. The Effects of AlN and Copper Back Side Deposition on the Performance of Etched Back GaN/Si HEMTs. IEEE Electron. Device Lett. 2019, 40, 1060–1063. [Google Scholar] [CrossRef]
- Shin, Y.; Kim, S.E.; Kim, S. Thermal assessment of copper through silicon via in 3D IC. Microelectron. Eng. 2016, 156, 2–5. [Google Scholar] [CrossRef]
- Lau, J.H.; Yue, T.G. Thermal management of 3D IC integration with TSV (through silicon via). In Proceedings of the IEEE 59th Electronic Components and Technology Conference, San Diego, CA, USA, 26–29 May 2009; pp. 635–640. [Google Scholar]
- Hsueh, K.-P.; Wang, H.-Y.; Wang, H.-C.; Kao, H.-L.; Chien, F.-T.; Chen, C.-T.; Chang, K.-J.; Chiu, H.-C. Reliability Studies on AlGaN/GaN Metal-Insulator-Semiconductor High-Electron-Mobility Transistors with Through-Substrate via Technique and Backside Heat Sink Metal on Silicon-on-Insulator Substrates. ECS J. Solid State Sci. Technol. 2018, 7, Q142–Q147. [Google Scholar] [CrossRef]
- Hwang, Y.-H.; Kang, T.-S.; Ren, F.; Pearton, S.J. Novel approach to improve heat dissipation of AlGaN/GaN high electron mobility transistors with a Cu filled via under device active area. J. Vac. Sci. Technol. B 2014, 32, 061202. [Google Scholar] [CrossRef]
- Jang, K.-W.; Hwang, I.-T.; Kim, H.-J.; Lee, S.-H.; Lim, J.-W.; Kim, H.-S. Thermal Analysis and Operational Characteristics of an AlGaN/GaN High Electron Mobility Transistor with Copper-Filled Structures: A Simulation Study. Micromachines 2019, 11, 53. [Google Scholar] [CrossRef]
- Mohanty, S.K.; Chen, Y.Y.; Yeh, P.H.; Horng, R.H. Thermal Management of Gan-on-Si High electron Mobility transistor by copper filled Mi-cro-trench Structure. Sci. Rep. 2019, 9, 19691. [Google Scholar] [CrossRef]
- Abid, I.; Canato, E.; Meneghini, M.; Meneghesso, G.; Cheng, K.; Medjdoub, F. GaN-on-silicon transistors with reduced current collapse and improved blocking voltage by means of local substrate removal. Appl. Phys. Exp. 2021, 14, 036501. [Google Scholar] [CrossRef]
- Dogmus, E.; Zegaoui, M.; Medjdoub, F. GaN-on-silicon high-electron-mobility transistor technology with ultra-low leakage up to 3000 V using local substrate removal and AlN ultra-wide bandgap. Appl. Phys. Exp. 2018, 11, 034102. [Google Scholar] [CrossRef]
- Malakoutian, M.; Ren, C.; Woo, K.; Li, H.; Chowdhury, S. Development of Polycrystalline Diamond Compatible with the Latest N-Polar GaN mm-Wave Technology. Cryst. Growth Des. 2021, 21, 2624–2632. [Google Scholar] [CrossRef]
- Guo, H.; Li, Y.; Yu, X.; Zhou, J.; Kong, Y. Thermal Performance Improvement of AlGaN/GaN HEMTs Using Nanocrystalline Diamond Capping Layers. Micromachines 2022, 13, 1486. [Google Scholar] [CrossRef] [PubMed]
- Nittala, P.V.K.; Remesh, N.; Niranjan, S.; Tasneem, S.; Raghavan, S.; Muralidharan, R.; Nath, D.N.; Sen, P. Enabling Transfer of Ultrathin Layers of GaN for Demonstration of a Heterogenous Stack on Copper Heat Spreader. IEEE Trans. Compon. Packag. Manuf. Technol. 2019, 10, 339–342. [Google Scholar] [CrossRef]
- Zhao, M.; Tang, X.; Huo, W.; Han, L.; Deng, Z.; Jiang, Y.; Wang, W.; Chen, H.; Du, C.; Jia, H. Characteristics of AlGaN/GaN high electron mobility transistors on metallic substrate. Chin. Phys. B 2020, 29, 048104. [Google Scholar] [CrossRef]
- Wang, Z.; Li, L.; Yao, Y. Machine Learning-Assisted Model for GaN Ohmic Contacts Regarding Fabrication Procesces. IEEE Trans. Electron. Devices 2021, 68, 2212–2219. [Google Scholar] [CrossRef]
- Konenkova, E.V.; Fedirko, V.A.; Zahn, D.R.; Zhilyaev, Y.V. Raman spectroscopy of GaN nucleation and free-standing layers grown by hydride vapor phase epitaxy on oxidized silicon. Appl. Phys. Lett. 2003, 83, 629–631. [Google Scholar] [CrossRef]
- Sun, H.; Liu, D.; Pomeroy, J.W.; Francis, D.; Faili, F.; Twitchen, D.J.; Kuball, M. GaN-on-diamond: Robust mechanical and thermal properties. In Proceedings of the CS Man-Tech Conference, Miami, FL, USA, 16–19 May 2016; pp. 201–204. [Google Scholar]
Material | Si | Cu |
---|---|---|
Thermal conductivity coefficient (W/m.K) | 135 | 386 |
Thermal expansion coefficient (1/K) × 10−6 | 2.6 | 16.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horng, R.-H.; Yeh, H.-Y.; Tumilty, N. Thermal Performance of Cu Electroplated GaN/AlGaN High-Electron-Mobility Transistors with Various-Thickness Si Substrates. Electronics 2023, 12, 2033. https://doi.org/10.3390/electronics12092033
Horng R-H, Yeh H-Y, Tumilty N. Thermal Performance of Cu Electroplated GaN/AlGaN High-Electron-Mobility Transistors with Various-Thickness Si Substrates. Electronics. 2023; 12(9):2033. https://doi.org/10.3390/electronics12092033
Chicago/Turabian StyleHorng, Ray-Hua, Hsiao-Yun Yeh, and Niall Tumilty. 2023. "Thermal Performance of Cu Electroplated GaN/AlGaN High-Electron-Mobility Transistors with Various-Thickness Si Substrates" Electronics 12, no. 9: 2033. https://doi.org/10.3390/electronics12092033
APA StyleHorng, R. -H., Yeh, H. -Y., & Tumilty, N. (2023). Thermal Performance of Cu Electroplated GaN/AlGaN High-Electron-Mobility Transistors with Various-Thickness Si Substrates. Electronics, 12(9), 2033. https://doi.org/10.3390/electronics12092033