A Disruptive Technology Identification Method for New Power Systems Based on Patent Evolution Analysis
Abstract
:1. Introduction
2. Establishment of Disruptive Technology Identification Models
2.1. Data Acquisition and Preprocessing
2.2. Disruptive Technology Recognition Algorithm
2.2.1. Patent Similarity Matrix
- (1)
- The TF-IDF algorithm is used to perform the keyword calculation of the pre-processed patent text data set, extract the keyword list of each patent text data , and construct a keyword co-occurrence matrix with the number of patent documents and keywords according to the TF-IDF value of each keyword.
- (2)
- The word vector model is used to process each patent text , and the word vector of each patent text is constructed according to the processed word sequence. All of the patent text vectors constitute the patent text vector set.
- (3)
- According to the cosine similarity formula, the similarity between two vectors in the patent text vector set is calculated as .
- (4)
- The dimensional patent text similarity matrix is established according to the calculation result of the cosine similarity. The form of dimensional patent text similarity matrix is constructed as shown in Formula (3):
2.2.2. Patent Novelty Matrix
2.2.3. Patent Evolution Matrix
2.3. An Indicator of Disruptive Technology
- (1)
- In the process of disruption, novelty and growth are prominent in the early stage and weaken over time. We characterize the radical novelty of disruptive technologies with the evolution of patent novelty. Therefore, the novelty of the described patents is defined as follows: if is less than 0.5, the novelty is weak; if is between 0.5 and 0.8, the novelty is medium; and if is greater than 0.8, the novelty is strong.
- (2)
- The relatively rapid growth is represented by the average annual growth of similar technologies. The relatively rapid growth is due to the fact that disruptive technologies tend to grow faster compared to other technologies in the same field. The growth of disruptive technologies is represented by the average annual growth of similar technologies through the constructed patent similarity matrix. The greater the average annual growth, the faster the development of disruptive technologies.
- (3)
- A prominent impact is represented by the number of patent citations [19]. The higher the citation frequency of a patent, the more subsequent technologies will be affected by it and the more important the technology covered by the patent [20]. In this paper, the patents that accounted for the top 10% of all patents cited in the year of publication were used to characterize the prominent impact of disruptive technologies.
3. Case Studies
3.1. Theoretical Verification
3.2. Power Communication Technology as an Example
3.2.1. Data Acquisition
3.2.2. Patent Similarity Matrix
3.2.3. Patent Novelty Matrix
3.2.4. Patent Evolution Matrix
3.3. Energy Generation Technology as an Example
3.3.1. Data Acquisition
3.3.2. Patent Similarity Matrix
3.3.3. Patent Novelty Matrix and Patent Evolution Matrix
4. Discrimination and Analysis
4.1. Identification of Technical Results
4.2. Analysis of Technical Development
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, C.; Ma, M.; Li, S.S.; Xia, D.; Yu, J.F.; Xu, H.Y. Research on the social impact detection of disruptive technology from altmetrics perspective. Inf. Theory Pract. 2022, 45, 93–104. [Google Scholar]
- Xu, J.G.; Li, M.J.; You, H.L. Advances in emerging technology identification research. J. Intell. 2018, 37, 8–12. [Google Scholar]
- Liu, A.; Li, L.; Cao, Y.; Wei, Y.; An, X.; Zhang, K.; Zhang, J.; Miao, H. Strategic connotations and policy implications of the concept of disruptive technologies. China Eng. Sci. 2018, 20, 7–13. [Google Scholar]
- Vojak, B.A.; Chambers, F.A. Roadmapping disruptive technical threats and opportunities in complex, technology-based subsystems: The SAILS methodology. Technol. Forecast. Soc. Chang. 2004, 71, 121–139. [Google Scholar] [CrossRef]
- Tellis, G.J. Organizing for radical product innovation. J. Adv. Signal Process. 1998, 35, 474–487. [Google Scholar]
- Sun, J.; Gao, J.; Yang, B.; Tan, R. Achieving disruptive innovation-forecasting potential technologies based upon technical system evolution by TRIZ. In Proceedings of the 2008 4th IEEE International Conference on Management of Innovation and Technology, Bangkok, Thailand, 21–24 September 2008. [Google Scholar]
- Carlsen, H.; Dreborg, K.; Godman, M.; Hansson, S.; Johansson, L.; Wikman-Svahn, P. Assessing socially disruptive technological change. Technol. Soc. 2010, 32, 209–218. [Google Scholar] [CrossRef]
- Bai, G.; Zheng, Y.; Wu, X.; Jin, J.; Liu, Q. Research and demonstration of disruptive technology prediction methods based on literature knowledge correlation. J. Inf. 2017, 36, 38–44. [Google Scholar]
- Chen, Z. Application of electric power communication technology in smart grid. Enterp. Technol. Dev. 2016, 35, 89–91. [Google Scholar]
- Bao, Z.Q.; Yu, M.; Guo, H.; Lin, X.; Guan, Z.Y. Research on distribution network expansion planning model and method considering carbon emission Reduction. Autom. Instrum. 2022, 43, 15–24. [Google Scholar]
- Yuan, L.; Zhang, T.; Zhang, Q.H.; Jiang, B.Y.; Lü, X.; Li, S.S.; Fu, Q. Construction of green, low-carbon and multi-energy complementary system for abandoned mines under global carbon neutrality. J. China Coal Soc. 2022, 47, 2131–2139. [Google Scholar]
- Han, X.Q.; Li, T.J.; Zhang, D.X.; Zhou, X. New issues and key technologies of new power system planning under double carbon goals. High Volt. Eng. 2021, 47, 3036–3046. [Google Scholar]
- Feng, K.M. Controlled fusion and the ITER program. Mod. Electr. Power 2006, 23, 82–88. [Google Scholar]
- Huang, Q.; Guo, Y.; Jiang, J.; Ming, B. China’s clean power development path under the goal of “dual carbon”. J. Shanghai Jiao Tong Univ. 2021, 55, 1499–1509. [Google Scholar]
- Shi, Y.; Zhou, X.; Xue, Y.; Sheng, K.; Hao, Z.; Wang, Y. Build a new power system scientifically and promote the upgrading of the energy and power industry chain. Sci. Technol. Her. 2021, 39, 53–55. [Google Scholar]
- Wu, Y.; Zhao, S.; Li, C.; Wei, N.; Wang, Z. Text classification method based on TF-IDF and cosine similarity. Chin. J. Inform. 2017, 31, 138–145. [Google Scholar]
- Huang, C.H.; Yin, J.; Hou, F.A. Text similarity measurement method combining lexical semantic information and TF-IDF method. J. Comput. Sci. 2011, 34, 856–864. [Google Scholar]
- Wu, F.; Luan, J.; Huang, L.; Zhang, Y. Knowledge frontier patent recognition based on novelty and domain intersection: A case study of elderly welfare technology. J. Inf. 2016, 35, 85–90. [Google Scholar]
- Wang, L.; Wu, L. A review of emerging technology recognition methods. Libr. Inf. Serv. 2020, 64, 125–135. [Google Scholar]
- Xi, J.H.; Peng, A.D. Study on the correlation between patent citation frequency and patent classification across fields-example of Chinese-granted patents in the United States. J. Intell. 2016, 35, 92–97. [Google Scholar]
Patent No. | Patent Code | Publish Time | Publication Novelty | Testing Novelty | Evolutionary Year | Annual Growth | Cited Frequency Sort |
---|---|---|---|---|---|---|---|
1 | CN1223355 | 1999 | 1 | 0.6 | 16 | 12.7 | Top 30% |
… | … | … | … | … | … | … | … |
128 | CN102834605A | 2012 | 1 | 0.823 | 3 | 16.27 | Top 10% |
… | … | … | … | … | … | … | … |
200 | CN204918497U | 2015 | 1 | 0.713 | 0 | 13.27 | Top 20% |
Patent No. | 1 | 2 | 4 | 4 | 5 | 6 | … | 381 |
---|---|---|---|---|---|---|---|---|
1 | 1 | 0.004 | 0.005 | 0.005 | 0.010 | 0.011 | … | 0.006 |
2 | 0.004 | 1 | 0.140 | 0.146 | 0.137 | 0.153 | … | 0.003 |
3 | 0.005 | 0.140 | 1 | 0.194 | 0.185 | 0.215 | … | 0.016 |
4 | 0.005 | 0.146 | 0.194 | 1 | 0.151 | 0.182 | … | 0.010 |
5 | 0.010 | 0.137 | 0.185 | 0.151 | 1 | 0.229 | … | 0.007 |
6 | 0.011 | 0.153 | 0.215 | 0.182 | 0.229 | 1 | … | 0.012 |
7 | 0.015 | 0.002 | 0.019 | 0.008 | 0.051 | 0.836 | … | 0.012 |
… | … | … | … | … | … | … | … | … |
381 | 0.006 | 0.003 | 0.016 | 0.010 | 0.007 | 0.012 | … | 1 |
Patent No. | 1 | 2 | 3 | 4 | 5 | 6 | … | 381 |
---|---|---|---|---|---|---|---|---|
1 | 1 | 0.996 | 0.995 | 0.995 | 0.990 | 0.989 | … | 0.897 |
2 | 0.996 | 1 | 0.860 | 0.854 | 0.854 | 0.847 | … | 0.842 |
3 | 0.995 | 0.860 | 1 | 0.806 | 0.806 | 0.785 | … | 0.781 |
4 | 0.995 | 0.854 | 0.806 | 1 | 0.849 | 0.818 | … | 0.818 |
5 | 0.990 | 0.854 | 0.806 | 0.849 | 1 | 0.771 | … | 0.249 |
6 | 0.989 | 0.847 | 0.785 | 0.818 | 0.771 | 1 | … | 0.164 |
7 | 0.985 | 0.847 | 0.785 | 0.818 | 0.771 | 0.164 | … | 0.823 |
… | … | … | … | … | … | … | … | … |
381 | 0.897 | 0.842 | 0.781 | 0.818 | 0.249 | 0.164 | … | 1 |
Patent No. | 1 | 2 | 3 | 4 | 5 | 6 | … | 381 | |
---|---|---|---|---|---|---|---|---|---|
Year | |||||||||
2002 | 1 | ||||||||
2008 | 0.996 | 1 | |||||||
2009 | 0.990 | 0.854 | 0.806 | 0.849 | 1 | ||||
2010 | 0.985 | 0.847 | 0.785 | 0.818 | 0.249 | 0.164 | … | ||
2011 | 0.985 | 0.847 | 0.785 | 0.818 | 0.249 | 0.164 | … | ||
2012 | 0.969 | 0.847 | 0.785 | 0.818 | 0.249 | 0.164 | … | ||
2013 | 0.947 | 0.847 | 0.785 | 0.818 | 0.249 | 0.164 | … | ||
… | … | … | … | … | … | … | … | ||
2022 | 0.897 | 0.842 | 0.781 | 0.818 | 0.249 | 0.164 | … | 1 | |
1 | 1 | 0.806 | 0.849 | 1 | 0.164 | 1 |
Patent No. | 1 | 2 | 4 | 4 | 5 | 6 | … | 426 |
---|---|---|---|---|---|---|---|---|
1 | 1 | 0.054 | 0.029 | 0.012 | 0.078 | 0.003 | … | 0.009 |
2 | 0.054 | 1 | 0.038 | 0.004 | 0.034 | 0.010 | … | 0.010 |
3 | 0.029 | 0.038 | 1 | 0.016 | 0.029 | 0.004 | … | 0.031 |
4 | 0.012 | 0.004 | 0.016 | 1 | 0.017 | 0.023 | … | 0.004 |
5 | 0.078 | 0.034 | 0.029 | 0.017 | 1 | 0.019 | … | 0.015 |
6 | 0.003 | 0.010 | 0.004 | 0.023 | 0.019 | 1 | … | 0.021 |
7 | 0.050 | 0.062 | 0.008 | 0.008 | 0.082 | 0.015 | … | 0.020 |
… | … | … | … | … | … | … | … | … |
426 | 0.009 | 0.010 | 0.031 | 0.004 | 0.015 | 0.021 | … | 1 |
Patent No. | 1 | 2 | 3 | 4 | 5 | 6 | … | 426 |
---|---|---|---|---|---|---|---|---|
1 | 1 | 0.946 | 0.946 | 0.946 | 0.922 | 0.922 | … | 0.871 |
2 | 0.946 | 1 | 0.962 | 0.962 | 0.962 | 0.962 | … | 0.857 |
3 | 0.946 | 0.962 | 1 | 0.984 | 0.971 | 0.971 | … | 0.784 |
4 | 0.946 | 0.962 | 0.984 | 1 | 0.983 | 0.977 | … | 0.877 |
5 | 0.922 | 0.962 | 0.971 | 0.983 | 1 | 0.981 | … | 0.695 |
6 | 0.922 | 0.962 | 0.971 | 0.977 | 0.981 | 1 | … | 0.663 |
7 | 0.922 | 0.938 | 0.971 | 0.977 | 0.918 | 0.985 | … | 0.793 |
… | … | … | … | … | … | … | … | … |
426 | 0.871 | 0.857 | 0.784 | 0.877 | 0.695 | 0.663 | … | 1 |
Patent No. | 1 | 2 | 3 | 4 | 5 | 6 | … | 426 | |
---|---|---|---|---|---|---|---|---|---|
Year | |||||||||
2008 | 1 | … | |||||||
2011 | 0.946 | 0.962 | 0.984 | 1 | … | ||||
2012 | 0.922 | 0.938 | 0.840 | 0.977 | 0.918 | 0.985 | … | ||
2013 | 0.883 | 0.875 | 0.840 | 0.977 | 0.850 | 0.961 | … | ||
2014 | 0.883 | 0.875 | 0.840 | 0.947 | 0.850 | 0.958 | … | ||
2015 | 0.883 | 0.857 | 0.840 | 0.943 | 0.850 | 0.850 | … | ||
2016 | 0.883 | 0.857 | 0.840 | 0.943 | 0.850 | 0.850 | … | ||
… | … | … | … | … | … | … | … | ||
2022 | 0.871 | 0.857 | 0.784 | 0.877 | 0.695 | 0.663 | … | 1 | |
1 | 0.962 | 0.984 | 1 | 0.918 | 0.985 | … | 1 |
Patent No. | Patent Code | Publish Time | Publication Novelty | Testing Novelty | Evolutionary Year | Annual Growth | Cited Frequency Sort |
---|---|---|---|---|---|---|---|
1 | CN2503163 | 2002 | 1 | 0.897 | 20 | 18 | Top 30% |
2 | CN201134298 | 2008 | 1 | 0.842 | 14 | 25 | Top 20% |
… | … | … | … | … | … | … | … |
367 | CN115314270A | 2022 | 0.973 | 0.973 | 0 | 14 | Top 10% |
… | … | … | … | … | … | … | … |
381 | CN218469730U | 2022 | 1 | 1 | 0 | 0 | Top 20% |
Patent No. | Patent Code | Publish Time | Publication Novelty | Testing Novelty | Evolutionary Year | Annual Growth | Cited Frequency Sort |
---|---|---|---|---|---|---|---|
1 | CN201084000 | 2008 | 1 | 0.871 | 14 | 26.79 | Top 10% |
2 | CN201947494U | 2011 | 0.962 | 0.857 | 11 | 33.72 | Top 30% |
… | … | … | … | … | … | … | … |
355 | CN111075529B | 2022 | 0.973 | 0.973 | 0 | 21 | Top 10% |
… | … | … | … | … | … | … | … |
426 | CN115313528A | 2022 | 1 | 1 | 0 | 0 | Top 20% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, D.; Ren, X.; Zhang, L.; Song, Z.; Nie, Y.; Zhang, L.; Ma, M.; Han, D. A Disruptive Technology Identification Method for New Power Systems Based on Patent Evolution Analysis. Electronics 2023, 12, 2045. https://doi.org/10.3390/electronics12092045
Pan D, Ren X, Zhang L, Song Z, Nie Y, Zhang L, Ma M, Han D. A Disruptive Technology Identification Method for New Power Systems Based on Patent Evolution Analysis. Electronics. 2023; 12(9):2045. https://doi.org/10.3390/electronics12092045
Chicago/Turabian StylePan, Dong, Xijun Ren, Li Zhang, Zhumeng Song, Yuanhong Nie, Long Zhang, Meiling Ma, and Dong Han. 2023. "A Disruptive Technology Identification Method for New Power Systems Based on Patent Evolution Analysis" Electronics 12, no. 9: 2045. https://doi.org/10.3390/electronics12092045
APA StylePan, D., Ren, X., Zhang, L., Song, Z., Nie, Y., Zhang, L., Ma, M., & Han, D. (2023). A Disruptive Technology Identification Method for New Power Systems Based on Patent Evolution Analysis. Electronics, 12(9), 2045. https://doi.org/10.3390/electronics12092045