Layerwise Adversarial Learning for Image Steganography
Abstract
:1. Introduction
2. Related Works
2.1. Traditional Image Steganography Methods
2.2. DNN-Based Image Steganography Methods
2.3. Layerwise Learning Methods
3. Proposed Method
3.1. The Proposed Network Architecture
3.1.1. The Single-Layer Sub-Network
3.1.2. The Discriminator Network
3.1.3. The Network Architecture of Hiding Network
3.1.4. The Network Architecture of Reveal Network
3.2. The Objective Function
3.2.1. The Objective Function of the Layerwise Adversarial Learning Hiding Network
3.2.2. The Objective Function of the Reveal Network
4. Experiments
4.1. Datasets and Preprocessing
4.2. Baselines
4.3. Evaluation Metrics
4.4. Experimental Results
4.5. Comparison with Other Methods
4.6. Ablation Study
4.7. Limitation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baluja, S. Hiding images in plain sight: Deep steganography. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 2069–2079. [Google Scholar]
- Yang, J.; Ruan, D.; Huang, J.; Kang, X.; Shi, Y.Q. An embedding cost learning framework using GAN. IEEE Trans. Inf. Forensics Secur. 2019, 15, 839–851. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, USA, 8–13 December 2014; pp. 2672–2680. [Google Scholar]
- Hayes, J.; Danezis, G. Generating steganographic images via adversarial training. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 1954–1963. [Google Scholar]
- Tang, W.; Li, B.; Tan, S.; Barni, M.; Huang, J. CNN-based adversarial embedding for image steganography. IEEE Trans. Inf. Forensics Secur. 2019, 14, 2074–2087. [Google Scholar] [CrossRef]
- Liu, X.; Ma, Z.; Ma, J.; Zhang, J.; Schaefer, G.; Fang, H. Image disentanglement autoencoder for steganography without embedding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 2303–2312. [Google Scholar]
- Islam, M.A.; Jia, S.; Bruce, N.D. How much Position Information Do Convolutional Neural Networks Encode? In Proceedings of the International Conference on Learning Representations, New Orleans, LA, USA, 6–9 May 2019.
- Sankaranarayanan, S.; Jain, A.; Chellappa, R.; Lim, S.N. Regularizing deep networks using efficient layerwise adversarial training. In Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar]
- Mielikainen, J. LSB matching revisited. IEEE Signal Process. Lett. 2006, 13, 285–287. [Google Scholar] [CrossRef]
- Cox, I.J.; Kilian, J.; Leighton, F.T.; Shamoon, T. Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Process. 1997, 6, 1673–1687. [Google Scholar] [CrossRef]
- Lin, W.H.; Horng, S.J.; Kao, T.W.; Fan, P.; Lee, C.L.; Pan, Y. An efficient watermarking method based on significant difference of wavelet coefficient quantization. IEEE Trans. Multimed. 2008, 10, 746–757. [Google Scholar]
- Luo, W.; Huang, F.; Huang, J. Edge adaptive image steganography based on LSB matching revisited. IEEE Trans. Inf. Forensics Secur. 2010, 5, 201–214. [Google Scholar]
- Holub, V.; Fridrich, J.; Denemark, T. Universal distortion function for steganography in an arbitrary domain. EURASIP J. Inf. Secur. 2014, 2014, 1. [Google Scholar] [CrossRef]
- Holub, V.; Fridrich, J. Designing steganographic distortion using directional filters. In Proceedings of the 2012 IEEE International Workshop on Information Forensics and Security (WIFS), Costa Adeje, Spain, 2–5 December 2012; pp. 234–239. [Google Scholar]
- Pevny, T.; Bas, P.; Fridrich, J. Steganalysis by subtractive pixel adjacency matrix. IEEE Trans. Inf. Forensics Secur. 2010, 5, 215–224. [Google Scholar] [CrossRef]
- Ruanaidh, J.; Dowling, W.; Boland, F.M. Phase watermarking of digital images. In Proceedings of the 3rd IEEE International Conference on Image Processing, Cairo, Egypt, 7–10 November 1996; Volume 3, pp. 239–242. [Google Scholar]
- Liu, Q. An approach to detecting JPEG down-recompression and seam carving forgery under recompression anti-forensics. Pattern Recognit. 2017, 65, 35–46. [Google Scholar] [CrossRef]
- Ma, Y.; Luo, X.; Li, X.; Bao, Z.; Zhang, Y. Selection of Rich Model Steganalysis Features Based on Decision Rough Set-Positive Region Reduction. IEEE Trans. Circuits Syst. Video Technol. 2018, 29, 336–350. [Google Scholar] [CrossRef]
- Ye, J.; Ni, J.; Yi, Y. Deep learning hierarchical representations for image steganalysis. IEEE Trans. Inf. Forensics Secur. 2017, 12, 2545–2557. [Google Scholar] [CrossRef]
- Wang, L.; Xu, Y.; Zhai, L.; Ren, Y.; Du, B. A posterior evaluation algorithm of steganalysis accuracy inspired by residual co-occurrence probability. Pattern Recognit. 2019, 87, 106–117. [Google Scholar] [CrossRef]
- Qian, Y.; Dong, J.; Wang, W.; Tan, T. Deep learning for steganalysis via convolutional neural networks. In Proceedings of the Media Watermarking, Security, and Forensics, San Francisco, CA, USA, 9–11 February 2015; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; Volume 9409, p. 94090J. [Google Scholar]
- Xu, G.; Wu, H.Z.; Shi, Y.Q. Structural design of convolutional neural networks for steganalysis. IEEE Signal Process. Lett. 2016, 23, 708–712. [Google Scholar] [CrossRef]
- Husien, S.; Badi, H. Artificial neural network for steganography. Neural Comput. Appl. 2015, 26, 111–116. [Google Scholar] [CrossRef]
- Brandao, A.S.; Jorge, D.C. Artificial neural networks applied to image steganography. IEEE Lat. Am. Trans. 2016, 14, 1361–1366. [Google Scholar] [CrossRef]
- Boroumand, M.; Chen, M.; Fridrich, J. Deep residual network for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 2018, 14, 1181–1193. [Google Scholar] [CrossRef]
- Zeng, J.; Tan, S.; Li, B.; Huang, J. Large-scale JPEG image steganalysis using hybrid deep-learning framework. IEEE Trans. Inf. Forensics Secur. 2017, 13, 1200–1214. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Chen, K.; Liu, J.; Liu, Y.; Yu, N. Adversarial examples against deep neural network based steganalysis. In Proceedings of the 6th ACM Workshop on Information Hiding and Multimedia Security, Innsbruck, Austria, 20–22 June 2018; pp. 67–72. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 5–9 October 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar]
- Hu, R.; Xiang, S. Cover-lossless robust image watermarking against geometric deformations. IEEE Trans. Image Process. 2020, 30, 318–331. [Google Scholar] [CrossRef]
- Tancik, M.; Mildenhall, B.; Ng, R. Stegastamp: Invisible hyperlinks in physical photographs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2117–2126. [Google Scholar]
- Sua, J.N.; Lim, S.Y.; Yulius, M.H.; Su, X.; Yapp, E.K.Y.; Le, N.Q.K.; Yeh, H.Y.; Chua, M.C.H. Incorporating convolutional neural networks and sequence graph transform for identifying multilabel protein Lysine PTM sites. Chemom. Intell. Lab. Syst. 2020, 206, 104171. [Google Scholar] [CrossRef]
- Pugliese, R.; Regondi, S.; Marini, R. Machine learning-based approach: Global trends, research directions, and regulatory standpoints. Data Sci. Manag. 2021, 4, 19–29. [Google Scholar] [CrossRef]
- Kha, Q.H.; Ho, Q.T.; Le, N.Q.K. Identifying SNARE Proteins Using an Alignment-Free Method Based on Multiscan Convolutional Neural Network and PSSM Profiles. J. Chem. Inf. Model. 2022, 62, 4820–4826. [Google Scholar] [CrossRef]
- Lu, S.P.; Wang, R.; Zhong, T.; Rosin, P.L. Large-capacity image steganography based on invertible neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 10816–10825. [Google Scholar]
- Mahdy, A. A numerical method for solving the nonlinear equations of Emden-Fowler models. J. Ocean. Eng. Sci. 2022. [Google Scholar] [CrossRef]
- Ray, B.; Mukhopadhyay, S.; Hossain, S.; Ghosal, S.K.; Sarkar, R. Image steganography using deep learning based edge detection. Multimed. Tools Appl. 2021, 80, 33475–33503. [Google Scholar] [CrossRef]
- Mahdy, A.M. Stability, existence, and uniqueness for solving fractional glioblastoma multiforme using a Caputo–Fabrizio derivative. Math. Methods Appl. Sci. 2023. [Google Scholar] [CrossRef]
- Xu, Y.; Mou, C.; Hu, Y.; Xie, J.; Zhang, J. Robust invertible image steganography. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 7875–7884. [Google Scholar]
- Bengio, Y.; Lee, D.H.; Bornschein, J.; Mesnard, T.; Lin, Z. Towards biologically plausible deep learning. arXiv 2015, arXiv:1502.04156. [Google Scholar]
- Mostafa, H.; Ramesh, V.; Cauwenberghs, G. Deep supervised learning using local errors. Front. Neurosci. 2018, 12, 608. [Google Scholar] [CrossRef]
- Lillicrap, T.P.; Cownden, D.; Tweed, D.B.; Akerman, C.J. Random synaptic feedback weights support error backpropagation for deep learning. Nat. Commun. 2016, 7, 13276. [Google Scholar] [CrossRef]
- Shaham, U.; Yamada, Y.; Negahban, S. Understanding adversarial training: Increasing local stability of supervised models through robust optimization. Neurocomputing 2018, 307, 195–204. [Google Scholar] [CrossRef]
- Dong, X.; Chen, S.; Pan, S. Learning to prune deep neural networks via layer-wise optimal brain surgeon. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4857–4867. [Google Scholar]
- Gao, Y.; Ma, J.; Zhao, M.; Liu, W.; Yuille, A.L. Nddr-cnn: Layerwise feature fusing in multi-task cnns by neural discriminative dimensionality reduction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–17 June 2019; pp. 3205–3214. [Google Scholar]
- Pan, J.; Zi, Y.; Chen, J.; Zhou, Z.; Wang, B. LiftingNet: A novel deep learning network with layerwise feature learning from noisy mechanical data for fault classification. IEEE Trans. Ind. Electron. 2017, 65, 4973–4982. [Google Scholar] [CrossRef]
- Belilovsky, E.; Eickenberg, M.; Oyallon, E. Greedy Layerwise Learning Can Scale To ImageNet. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 583–593. [Google Scholar]
- Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 807–814. [Google Scholar]
- Chen, X.; Fang, H.; Lin, T.Y.; Vedantam, R.; Gupta, S.; Dollár, P.; Zitnick, C.L. Microsoft COCO captions: Data collection and evaluation server. arXiv 2015, arXiv:1504.00325. [Google Scholar]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef]
- Hore, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar]
- Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process. 2004, 13, 600–612. [Google Scholar] [CrossRef]
- Lerch-Hostalot, D.; Megías, D. Unsupervised steganalysis based on artificial training sets. Eng. Appl. Artif. Intell. 2016, 50, 45–59. [Google Scholar] [CrossRef]
Method | ATS | DLAL | ||
---|---|---|---|---|
GANs1 | 25.13/39.80 | 0.7612/0.9635 | 0.58 | 0.67 |
GANs2 | 25.52/39.86 | 0.7622/0.9645 | 0.59 | 0.68 |
Encode1 | 26.32/40.34 | 0.7637/0.9667 | 0.61 | 0.70 |
U-Net1 | 26.35/40.56 | 0.7652/0.9705 | 0.63 | 0.72 |
ours | 31.27/41.09 | 0.8002/0.9713 | 0.70 | 0.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, B.; Shi, L.; Cao, Z.; Niu, S. Layerwise Adversarial Learning for Image Steganography. Electronics 2023, 12, 2080. https://doi.org/10.3390/electronics12092080
Chen B, Shi L, Cao Z, Niu S. Layerwise Adversarial Learning for Image Steganography. Electronics. 2023; 12(9):2080. https://doi.org/10.3390/electronics12092080
Chicago/Turabian StyleChen, Bin, Lei Shi, Zhiyi Cao, and Shaozhang Niu. 2023. "Layerwise Adversarial Learning for Image Steganography" Electronics 12, no. 9: 2080. https://doi.org/10.3390/electronics12092080
APA StyleChen, B., Shi, L., Cao, Z., & Niu, S. (2023). Layerwise Adversarial Learning for Image Steganography. Electronics, 12(9), 2080. https://doi.org/10.3390/electronics12092080