A Compact 2.4 GHz L-Shaped Microstrip Patch Antenna for ISM-Band Internet of Things (IoT) Applications
Abstract
:1. Introduction
2. Antenna Design
3. Parametric Study Working Principles
3.1. Working Principles
3.2. Aperture’s Length (L) and Width (W)
3.3. Patch’s Length (LP) and Width (WP)
4. Results and Discussion
5. Application Scenarios
Indoor Localization Systems
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdulzahra, D.H.; Alnahwi, F.; Abdullah, A.S.; Al-Yasir, Y.I.A.; Abd-Alhameed, R.A. A Miniaturized Triple-Band Antenna Based on Square Split Ring for IoT Applications. Electronics 2022, 11, 2818. [Google Scholar] [CrossRef]
- Ibrahim, H.H.; Singh, M.J.; Al-Bawri, S.S.; Ibrahim, S.K.; Islam, M.T.; Soliman, M.S.; Islam, M.S. Low Profile Monopole Meander Line Antenna for WLAN Applications. Sensors 2022, 22, 6180. [Google Scholar] [CrossRef] [PubMed]
- Koga, Y.; Kai, M. A transparent double folded loop antenna for IoT applications. In Proceedings of the 2018 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Cartagena, Colombia, 10–14 September 2018; pp. 762–765. [Google Scholar]
- Jha, K.R.; Bukhari, B.; Singh, C.; Mishra, G.; Sharma, S.K. Compact Planar Multistandard MIMO Antenna for IoT Applications. IEEE Trans. Antennas Propag. 2018, 66, 3327–3336. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Virdee, B.S.; Ali, A.; Limiti, E. A novel monofilar-Archimedean metamaterial inspired leaky-wave antenna for scanning application for passive radar systems. Microw. Opt. Technol. Lett. 2018, 60, 2055–2060. [Google Scholar] [CrossRef]
- Damis, H.A.; Khalid, N.; Mirzavand, R.; Chung, H.J.; Mousavi, P. Investigation of epidermal loop antennas for biotelemetry IoT applications. IEEE Access 2018, 6, 15806–15815. [Google Scholar] [CrossRef]
- Alibakhshikenari, M.; Limiti, E.; Naser-Moghadasi, M.; Virdee, B.S.; Sadeghzadeh, R.A. A New Wideband Planar Antenna with Band-Notch Functionality at GPS, Bluetooth and WiFi Bands for Integration in Portable Wireless Systems. AEU—Int. J. Electron. Commun. 2017, 72, 79–85. [Google Scholar] [CrossRef]
- Liu, C.; Guo, Y.-X.; Xiao, S. A Hybrid Patch/Slot Implantable Antenna for Biotelemetry Devices. IEEE Antennas Wirel. Propag. Lett. 2013, 11, 1646–1649. [Google Scholar] [CrossRef]
- Al-Gburi, A.J.A.; Zakaria, Z.; Palandoken, M.; Ibrahim, I.M.; Althuwayb, A.A.; Ahmad, S.; Al-Bawri, S.S. Super Compact UWB Monopole Antenna for Small IoT Devices. Comput. Mater. Contin. 2022, 73, 2785–2799. [Google Scholar]
- Al-Bawri, S.S.; Islam, M.S.; Wong, H.Y.; Jamlos, M.F.; Narbudowicz, A.; Jusoh, M.; Sabapathy, T.; Islam, M.T. Metamaterial Cell-Based Superstrate towards Bandwidth and Gain Enhancement of Quad-Band CPW-Fed Antenna for Wireless Applications. Sensors 2020, 20, 457. [Google Scholar] [CrossRef]
- Lee, M.W.; Leung, K.; Chow, Y. Low cost meander line chip monopole antenna. IEEE Trans. Antennas Propag. 2013, 62, 442–445. [Google Scholar] [CrossRef]
- Shabbir, T.; Islam, M.T.; Misran, N.; Al-Bawri, S.S.; Singh, S. Broadband single-layer reflectarray antenna loaded with meander-delay-lines for X-band applications. Alex. Eng. J. 2020, 60, 1105–1112. [Google Scholar] [CrossRef]
- Kuo, J.-S.; Wong, K.-L. A compact microstrip antenna with meandering slots in the ground plane. Microwave Opt. Technol. Lett. 2001, 29, 95–97. [Google Scholar] [CrossRef]
- Sadat, S.; Fardis, M.; Geran, F.; Dadashzadeh, G.; Hojjat, N.; Roshandel, M. A compact microstrip square-ring slot Antenna for UWB applications. In Proceedings of the 2006 IEEE Antennas and Propagation Society International Symposium, Albuquerque, NM, USA, 9–14 July 2006; pp. 4629–4632. [Google Scholar]
- Chen, J.-H.; Yang, C.-K.; Cheng, C.-Y.; Yu, C.-C.; Hsu, C.-H. Gain enhancement of a compact 2.4-GHz meander antenna using inductive feed and capacitive load. Microwave Opt. Technol. Lett. 2017, 59, 2598–2604. [Google Scholar] [CrossRef]
- Al-Bawri, S.S.; Hwang Goh, H.; Islam, M.S.; Wong, H.Y.; Jamlos, M.F.; Narbudowicz, A.; Jusoh, M.; Sabapathy, T.; Khan, R.; Islam, M.T. Compact Ultra-Wideband Monopole Antenna Loaded with Metamaterial. Sensors 2020, 20, 796. [Google Scholar] [CrossRef] [PubMed]
- Al-Bawri, S.S.; Islam, M.T.; Islam, M.S.; Singh, M.J.; Alsaif, H. Massive metamaterial system-loaded MIMO antenna array for 5G base stations. Sci. Rep. 2022, 12, 14311. [Google Scholar]
- Yildirim, B.; Cetiner, B.A. Enhanced gain patch antenna with a rectangular loop shaped parasitic radiator. IEEE Antennas Wirel. Propag. Lett. 2008, 7, 229–232. [Google Scholar] [CrossRef]
- Cho, Y.J.; Hwang, S.H.; Park, S.O. A dual-band internal antenna with a parasitic patch for mobile handsets and the consideration of the handset case and battery. IEEE Antennas Wirel. Propag. Lett. 2005, 4, 429–432. [Google Scholar]
- Chang, L.; Chen, L.L.; Zhang, J.Q.; Li, D. A Broadband Dipole Antenna with Parasitic Patch Loading. IEEE Trans. Antennas Propag. 2018, 17, 1717–1721. [Google Scholar] [CrossRef]
- Liang, J.; Chiau, C.C.; Chen, X.; Parini, C.G. Study of a printed circular disc monopole antenna for UWB systems. IEEE Trans. Antennas Propag. 2005, 53, 3500–3504. [Google Scholar] [CrossRef]
- Lin, J.-F.; Chu, Q.-X. Enhancing bandwidth of CP microstrip antenna by using parasitic patches in annular sector shapes to control electric field components. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 924–927. [Google Scholar] [CrossRef]
- Fan, S.T.; Yin, Y.Z.; Lee, B.; Hu, W.; Yang, X. Bandwidth Enhancement of a Printed Slot Antenna With a Pair of Parasitic Patches. IEEE Antennas Wirel. Propag. Lett. 2012, 11, 1230–1233. [Google Scholar] [CrossRef]
- Arif, A.; Zubair, M.; Ali, M.; Khan, M.U.; Mehmood, M.Q. A Compact, Low-Profile Fractal Antenna for Wearable On-Body WBAN Applications. Antennas Wirel. Propag. Lett. 2019, 18, 981–985. [Google Scholar] [CrossRef]
- Awan, W.A.; Hussain, N.; Le, T.T. Ultra-thin flexible fractal antenna for 2.45 GHz application with wideband harmonic rejection. AEU-Int. J. Electron. Commun. 2019, 110, 152851. [Google Scholar] [CrossRef]
- Awan, W.A.; Hussain, N.; Kim, S.; Kim, N. A Frequency-Reconfigurable Filtenna for GSM, 4G-LTE, ISM, and 5G Sub-6 GHz Band Applications. Sensors 2022, 22, 5558. [Google Scholar] [CrossRef] [PubMed]
- Kang, Z.; Lin, X.; Tang, C.; Mei, P.; Liu, W.; Fan, Y. 2.45-GHz wideband harmonic rejection rectenna for wireless power transfer. Int. J. Microw. Wirel. Technol. 2017, 9, 977–983. [Google Scholar] [CrossRef]
- Ali, E.M.; Awan, W.A.; Naqvi, S.I.; Alzaidi, M.S.; Alzahrani, A.; Elkamchouchi, D.H.; Falcone, F.; Alharbi, T.E.A. A Low-Profile Antenna for On-Body and Off-Body Applications in the Lower and Upper ISM and WLAN Bands. Sensors 2023, 23, 709. [Google Scholar] [CrossRef] [PubMed]
- Bayarzaya, B.; Hussain, N.; Awan, W.A.; Sufian, M.A.; Abbas, A.; Choi, D.; Lee, J.; Kim, N. A Compact MIMO Antenna with Improved Isolation for ISM, Sub-6 GHz, and WLAN Application. Micromachines 2022, 13, 1355. [Google Scholar] [CrossRef]
- Khan, U.R.; Sheikh, J.A.; Junaid, A.; Amin, R.; Ashraf, S.; Ahmed, S. Design of a Compact Hybrid Moore’s Fractal Inspired Wearable Antenna for IoT Enabled Bio-Telemetry in Diagnostic Health Monitoring System. IEEE Access 2022, 10, 116129–116140. [Google Scholar] [CrossRef]
- Simorangkir, R.B.V.B.; Yang, Y.; Matekovits, L.; Esselle, K.P. Dual-Band Dual-Mode Textile Antenna on PDMS Substrate for Body-Centric Communications. IEEE Antennas Wirel. Propag. Lett. 2016, 16, 677–680. [Google Scholar] [CrossRef]
- Awan, W.A.; Ghaffar, A.; Naqvi, S.I. PDMS Based Compact Antenna for 2.45 GHz Application having Wide Band Harmonic Suppresion. In Proceedings of the 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), Denver, CO, USA, 10–15 July 2022; pp. 782–783. [Google Scholar]
- Mohamadzade, B.; Simorangkir, R.B.V.B.; Hashmi, R.M.; Gharaei, R.; Lalbakhsh, A.; Shrestha, S.; Zhadobov, M.; Sauleau, R. A Conformal, Dynamic Pattern-Reconfigurable Antenna Using Conductive Textile-Polymer Composite. IEEE Trans. Antennas Propag. 2021, 69, 6175–6184. [Google Scholar] [CrossRef]
- Liu, W.; Xu, L.; Zhan, H. Design of 2.4 GHz/5 GHz planar dual-band electrically small slot antenna based on impedance matching circuit. AEU-Int. J. Electron. Commun. 2018, 83, 322–328. [Google Scholar] [CrossRef]
- Naidu, P.V.; Kumar, A.; Rajkumar, R. Design, analysis and fabrication of compact dual band uniplanar meandered ACS fed antenna for 2.5/5 GHz applications. Microsyst. Technol. 2018, 25, 97–104. [Google Scholar] [CrossRef]
- Othman, N.; Samsuri, N.A.; Rahim, M.K.A.; Kamardin, K.; Majid, H.A. Meander bowtie Antenna for Wearable Application. TELKOMNIKA 2018, 16, 1522–1526. [Google Scholar] [CrossRef]
- Islam, M.S.; Islam, M.T.; Ullah, M.A.; Beng, G.K.; Amin, N.; Misran, N. A modified meander line microstrip patch antenna with enhanced bandwidth for 2.4 GHz ISM-band Internet of Things (IoT) applications. IEEE Access 2019, 7, 127850–127861. [Google Scholar] [CrossRef]
- Izzuddin, A.; Dewantari, A.; Setijadi, E.; Palantei, E.; Rahardjo, E.T.; Munir, A. Design of 2.4 GHz Slotted SIW Array Antenna for WLAN Application. In Proceedings of the 2020 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET), Tangerang, Indonesia, 18–20 November 2020; pp. 70–73. [Google Scholar]
- Xu, Y.; Wen, S.; Dong, Y. Compact Slot Antenna with Extended Bandwidth Integrated on Metal Box for 2.4 GHz IoT Applications. In Proceedings of the 2021 IEEE MTT-S International Wireless Symposium (IWS), Nanjing, China, 23–26 May 2021; pp. 1–3. [Google Scholar]
- Liu, Z.; Zhang, Y.; He, Y.; Li, Y. A Compact-Size and High-Efficiency Cage Antenna for 2.4-GHz WLAN Access Points. IEEE Trans. Antennas Propag. 2022, 70, 12317–12321. [Google Scholar] [CrossRef]
- Hussain, N.; Kim, N. Integrated Microwave and mm-Wave MIMO Antenna Module with 360° Pattern Diversity For 5G Internet-of-Things. IEEE Internet Things J. 2022, 9, 24777–24789. [Google Scholar] [CrossRef]
- Al-Bawri, S.S.; Islam, M.T.; Singh, M.J.; Jamlos, M.F.; Narbudowicz, A.; Ammann, M.J.; Schreurs, D.M.M.P. RSS-Based Indoor Localization System with Single Base Station. Comput. Mater. Contin. 2022, 70, 5437–5452. [Google Scholar] [CrossRef]
- Al-Bawri, S.S.; Islam, M.S.; Sahaq, K.S.B.; Marai, M.S.; Jusoh, M.; Sabapathy, T.; Padmanathan, S.; Islam, M.T. Multilayer base station antenna at 3.5 GHz for Future 5G Indoor Systems, 2019. In Proceedings of the 2019 IEEE First International Conference of Intelligent Computing and Engineering (ICOICE), Hadhramout, Yemen, 15–16 December 2019; pp. 1–4. [Google Scholar]
Year | Ref. | Antenna Shape | Antenna Size | Fractional BW (%) | Rad. Eff. (%) | Gain (dB) | Applications |
---|---|---|---|---|---|---|---|
2014 | [11] | Meander line | 32.00 × 01.60 | 7.60 | - | 0.50 | * NS |
2017 | [34] | Spiral slot | 12.45 × 13.05 | 7.50 | - | 1.33 | * NS |
2018 | [35] | Uniplanar | 10.00 × 19.00 | 8.00 | - | 1.20 | 2.5 GHz applications |
2018 | [36] | Bowtie antenna | 29.00 × 13.70 | - | 89 | 1.47 | Wearable application |
2019 | [37] | Meander line | 40.00 × 10.00 | 12.5 | 79 | 1.34 | IoT |
2020 | [38] | Slotted SIW | 120.0 × 395.4 | 2.10 | - | 4.80 | WLAN |
2021 | [39] | Slot antenna | 105.0 × 85.00 | 3.20 | - | 4.00 | IoT |
2022 | [40] | Cage antenna | 49.00 × 49.00 | 3.20 | 93 | 3.00 | WLAN |
2023 | This study | L-shaped | 28.00 × 21.00 | 5.80 | 98 | 2.09 | IoT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zambak, M.F.; Al-Bawri, S.S.; Jusoh, M.; Rambe, A.H.; Vettikalladi, H.; Albishi, A.M.; Himdi, M. A Compact 2.4 GHz L-Shaped Microstrip Patch Antenna for ISM-Band Internet of Things (IoT) Applications. Electronics 2023, 12, 2149. https://doi.org/10.3390/electronics12092149
Zambak MF, Al-Bawri SS, Jusoh M, Rambe AH, Vettikalladi H, Albishi AM, Himdi M. A Compact 2.4 GHz L-Shaped Microstrip Patch Antenna for ISM-Band Internet of Things (IoT) Applications. Electronics. 2023; 12(9):2149. https://doi.org/10.3390/electronics12092149
Chicago/Turabian StyleZambak, Muhammad Fitra, Samir Salem Al-Bawri, Muzammil Jusoh, Ali Hanafiah Rambe, Hamsakutty Vettikalladi, Ali M. Albishi, and Mohamed Himdi. 2023. "A Compact 2.4 GHz L-Shaped Microstrip Patch Antenna for ISM-Band Internet of Things (IoT) Applications" Electronics 12, no. 9: 2149. https://doi.org/10.3390/electronics12092149
APA StyleZambak, M. F., Al-Bawri, S. S., Jusoh, M., Rambe, A. H., Vettikalladi, H., Albishi, A. M., & Himdi, M. (2023). A Compact 2.4 GHz L-Shaped Microstrip Patch Antenna for ISM-Band Internet of Things (IoT) Applications. Electronics, 12(9), 2149. https://doi.org/10.3390/electronics12092149