Low-Resolution Optimization for an Unmanned Aerial Vehicle Communication Network under a Passive Reconfigurable Intelligent Surface and Active Reconfigurable Intelligent Surface
Abstract
:1. Introduction
- The study focuses on passive, RIS-assisted, multi-user communication within UAV communication networks, aiming to maximize users’ worst rate. To efficiently solve this optimization problem, it is decomposed into two subproblems: trajectory design and PREs optimization. The SCA method is used to convexify the subproblems, and a two-stage algorithm with high complexity is proposed to alternately optimize them. To simplify the algorithm, a closed-form solution is derived for the phase optimization subproblem within passive RIS settings.
- To further enhance the benefits of RIS, this study explores active RIS (aRIS)-assisted multiuser communication within a UAV communication system. Distinguishing from passive RIS, the aRIS-assisted UAV network experiences self-interference. To address this, a two-stage algorithm is proposed, incorporating power-amplified PREs optimization and UAV trajectory design.
2. Problem Statements and Reformulations
2.1. Passive RIS
2.2. Active RIS
3. Passive RIS Convex-Solver-Based Algorithms
3.1. Alternating Optimization of UAV Trajectory
3.2. Alternating Optimization of the Passive PREs
3.3. Quantized Alternating Optimization
4. Passive RIS Reduced-Complexity PRE Optimization for the MR Problem
Alternating Optimization of the PREs
5. Active RIS Convex-Solver-Based Algorithms
5.1. Alternating Optimization of UAV Trajectory
5.2. Alternating Optimization of the Power-Amplified PREs
5.3. Alternating Optimization of Amplifier and PREs
6. Numerical Examples
- Partially scalable MR RIS represents the performance of Algorithm 3, which employs an iterative approach involving the convex problem (27) and the closed-form expression (58) to address the MR problem (11) using RIS with 3-bit quantized PREs.
Algorithm 1 CVX-based algorithm for computing (11) |
|
Algorithm 2 CVX-based algorithm for computing (22) |
|
Algorithm 3 Partially scalable MR algorithm |
|
7. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Zhang, H.; Saad, W.; Debbah, M.; Song, L. Guest editorial: Cellular Internet of UAVs for 5G and beyond. IET Commun. 2021, 15, 1259–1261. [Google Scholar] [CrossRef]
- Gupta, L.; Jain, R.; Vaszkun, G. Survey of Important Issues in UAV Communication Networks. IEEE Commun. Surv. Tut. 2016, 18, 1123–1152. [Google Scholar] [CrossRef]
- Liao, N.; He, P.; Du, Y.; Zhang, Y.; Chen, Y.; Liang, T. Joint mission planning and spectrum resources optimization for multi-UAV reconnaissance. IET Commun. 2023, 17, 324–335. [Google Scholar] [CrossRef]
- Xiao, Z.; Zhu, L.; Liu, Y.; Yi, P.; Zhang, R.; Xia, X.G.; Schober, R. A Survey on Millimeter-Wave Beamforming Enabled UAV Communications and Networking. IEEE Commun. Surv. Tut. 2022, 24, 557–610. [Google Scholar] [CrossRef]
- Sheng, Z.; Tuan, H.D.; Duong, T.Q.; Hanzo, L. UAV-Aided Two-Way Multi-User Relaying. IEEE Trans. Commun. 2021, 69, 246–260. [Google Scholar] [CrossRef]
- Yuan, Z.; Jiang, K.; Jia, W.; Liu, R.; Wang, Z.; Mao, X. Interference coordination and throughput maximisation in an unmanned aerial vehicle-assisted cellular: User association and three-dimensional trajectory optimisation. IET Commun. 2021, 15, 1273–1286. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, R.; Lim, T.J. Throughput Maximization for UAV-Enabled Mobile Relaying Systems. IEEE Trans. Commun. 2016, 64, 4983–4996. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, R. Energy-Efficient UAV Communication with Trajectory Optimization. IEEE Trans. WireL. Commun. 2017, 16, 3747–3760. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, M.; Pan, C.; Wang, K.; Pan, Y. Joint Optimization of UAV Trajectory and Sensor Uploading Powers for UAV-Assisted Data Collection in Wireless Sensor Networks. IEEE Internet Things J. 2022, 9, 11214–11226. [Google Scholar] [CrossRef]
- Zeng, Y.; Xu, X.; Zhang, R. Trajectory Design for Completion Time Minimization in UAV-Enabled Multicasting. IEEE Trans. Wirel. Commun. 2018, 17, 2233–2246. [Google Scholar] [CrossRef]
- Song, Q.; Jin, S.; Zheng, F.C. Completion Time and Energy Consumption Minimization for UAV-Enabled Multicasting. IEEE Wirel. Commun. Lett. 2019, 8, 821–824. [Google Scholar] [CrossRef]
- Li, M.; Jia, G.; Li, X.; Qiu, H. Efficient Trajectory Planning for Optimizing Energy Consumption and Completion Time in UAV-Assisted IoT Networks. Mathematics 2023, 11, 4399. [Google Scholar] [CrossRef]
- Yang, L.; Meng, F.; Zhang, J.; Hasna, M.O.; Renzo, M.D. On the Performance of RIS-Assisted Dual-Hop UAV Communication Systems. IEEE Trans. Vehic. Techn. 2020, 69, 10385–10390. [Google Scholar] [CrossRef]
- Guo, K.; An, K. On the Performance of RIS-Assisted Integrated Satellite-UAV-Terrestrial Networks with Hardware Impairments and Interference. IEEE Wirel. Commun. Lett. 2022, 11, 131–135. [Google Scholar] [CrossRef]
- Mei, H.; Yang, K.; Shen, J.; Liu, Q. Joint Trajectory-Task-Cache Optimization with Phase-Shift Design of RIS-Assisted UAV for MEC. IEEE Wirel. Commun. Lett. 2021, 10, 1586–1590. [Google Scholar] [CrossRef]
- Guo, J.; Yu, L.; Chen, Z.; Yao, Y.; Wang, Z.; Wang, Z.; Zhao, Q. RIS-assisted secure UAV communications with resource allocation and cooperative jamming. IET Commun. 2022, 16, 1582–1592. [Google Scholar] [CrossRef]
- Zhang, H.; Di, B.; Bian, K.; Han, Z.; Poor, H.V.; Song, L. Toward Ubiquitous Sensing and Localization with Reconfigurable Intelligent Surfaces. Proc. IEEE 2022, 110, 1401–1422. [Google Scholar] [CrossRef]
- Huang, C.; Hu, S.; Alexandropoulos, G.C.; Zappone, A.; Yuen, C.; Zhang, R.; Renzo, M.D.; Debbah, M. Holographic MIMO Surfaces for 6G Wireless Networks: Opportunities, Challenges, and Trends. IEEE Wirel. Commun. 2020, 27, 118–125. [Google Scholar] [CrossRef]
- Pan, C.; Ren, H.; Wang, K.; Kolb, J.F.; Elkashlan, M.; Chen, M.; Di Renzo, M.; Hao, Y.; Wang, J.; Swindlehurst, A.L.; et al. Reconfigurable Intelligent Surfaces for 6G Systems: Principles, Applications, and Research Directions. IEEE Commun. Mag. 2021, 59, 14–20. [Google Scholar] [CrossRef]
- Li, S.; Duo, B.; Yuan, X.; Liang, Y.C.; Di Renzo, M. Reconfigurable Intelligent Surface Assisted UAV Communication: Joint Trajectory Design and Passive Beamforming. IEEE Wirel. Commun. Lett. 2020, 9, 716–720. [Google Scholar] [CrossRef]
- Basharat, S.; Khan, M.; Iqbal, M.; Hashmi, U.S.; Zaidi, S.A.R.; Robertson, I. Exploring reconfigurable intelligent surfaces for 6G: State-of-the-art and the road ahead. IET Commun. 2022, 16, 1458–1474. [Google Scholar] [CrossRef]
- Hassouna, S.; Jamshed, M.A.; Rains, J.; Kazim, J.u.R.; Rehman, M.U.; Abualhayja, M.; Mohjazi, L.; Cui, T.J.; Imran, M.A.; Abbasi, Q.H. A survey on reconfigurable intelligent surfaces: Wireless communication perspective. IET Commun. 2023, 17, 497–537. [Google Scholar] [CrossRef]
- Chen, P.; Shi, L.; Fang, Y.; Lau, F.C.M.; Cheng, J. Rate-Diverse Multiple Access Over Gaussian Channels. IEEE Trans. Wirel. Commun. 2023, 22, 5399–5413. [Google Scholar] [CrossRef]
- Qiu, Y.; Xie, Z.; Kang, P.; Chen, P.; Fang, Y. Polar-coded Gaussian Multiple-Access Channels with Physical-Layer Network Coding. IEEE Trans. Veh. Technol. 2024, 1–6. [Google Scholar] [CrossRef]
- Pan, Y.; Wang, K.; Pan, C.; Zhu, H.; Wang, J. UAV-Assisted and Intelligent Reflecting Surfaces-Supported Terahertz Communications. IEEE Wirel. Commun. Lett. 2021, 10, 1256–1260. [Google Scholar] [CrossRef]
- Misbah, M.; Kaleem, Z.; Khalid, W.; Yuen, C.; Jamalipour, A. Phase and 3-D Placement Optimization for Rate Enhancement in RIS-Assisted UAV Networks. IEEE Wirel. Commun. Lett. 2023, 12, 1135–1138. [Google Scholar] [CrossRef]
- Ranjha, A.; Kaddoum, G. URLLC Facilitated by Mobile UAV Relay and RIS: A Joint Design of Passive Beamforming, Blocklength, and UAV Positioning. IEEE Internet Things J. 2021, 8, 4618–4627. [Google Scholar] [CrossRef]
- Li, S.; Duo, B.; Renzo, M.D.; Tao, M.; Yuan, X. Robust Secure UAV Communications with the Aid of Reconfigurable Intelligent Surfaces. IEEE Trans. Wirel. Commun. 2021, 20, 6402–6417. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Nguyen, V.D.; Van Nguyen, H.; Wu, Q.; Tölli, A.; Chatzinotas, S.; Juntti, M. Fairness Enhancement of UAV Systems with Hybrid Active-Passive RIS. IEEE Trans. Wirel. Commun. 2023, 1. [Google Scholar] [CrossRef]
- Zhi, K.; Pan, C.; Ren, H.; Chai, K.K.; Elkashlan, M. Active RIS Versus Passive RIS: Which is Superior with the Same Power Budget? IEEE Commun. Lett. 2022, 26, 1150–1154. [Google Scholar] [CrossRef]
- Thantharate, P.; Thantharate, A.; Kulkarni, A. GREENSKY: A fair energy-aware optimization model for UAVs in next-generation wireless networks. Green Energy Intell. Transp. 2024, 3, 100130. [Google Scholar] [CrossRef]
- Adam, A.B.M.; Ouamri, M.A.; Wan, X.; Muthanna, M.S.A.; Alkanhel, R.; Muthanna, A.; Li, X. Secure Communication in UAV–RIS-Empowered Multiuser Networks: Joint Beamforming, Phase Shift, and UAV Trajectory Optimization. IEEE Syst. J. 2024, 1–11. [Google Scholar] [CrossRef]
- Lv, W.; Bai, J.; Yan, Q.; Wang, H.M. RIS-Assisted Green Secure Communications: Active RIS or Passive RIS? IEEE Wirel. Commun. Lett. 2023, 12, 237–241. [Google Scholar] [CrossRef]
- Zhang, Z.; Dai, L.; Chen, X.; Liu, C.; Yang, F.; Schober, R.; Poor, H.V. Active RIS vs. Passive RIS: Which Will Prevail in 6G? IEEE Trans. Commun. 2023, 71, 1707–1725. [Google Scholar] [CrossRef]
- Di Renzo, M.; Debbah, M.; Phan-Huy, D.T.; Zappone, A.; Alouini, M.S.; Yuen, C.; Sciancalepore, V.; Alexandropoulos, G.C.; Hoydis, J.; Gacanin, H.; et al. Smart Radio Environments Empowered by AI Reconfigurable Meta-Surfaces: An Idea Whose Time Has Come. EURASIP J. Wirel. Commun. Netw. 2019, 2019, 129. [Google Scholar] [CrossRef]
- Ozdogan, O.; Bjornson, E.; Larsson, E.G. Intelligent Reflecting Surfaces: Physics, Propagation, and Pathloss Modeling. IEEE Wirel. Commun. Lett. 2020, 9, 581–585. [Google Scholar] [CrossRef]
- Nadeem, Q.U.A.; Kammoun, A.; Chaaban, A.; Debbah, M.; Alouini, M.S. Asymptotic Max-Min SINR Analysis of Reconfigurable Intelligent Surface Assisted MISO Systems. IEEE Trans. Wirel. Commun. 2020, 19, 7748–7764. [Google Scholar] [CrossRef]
- Bjornson, E.; Ozdogan, O.; Larsson, E.G. Intelligent Reflecting Surface Versus Decode-and-Forward: How Large Surfaces are Needed to Beat Relaying? IEEE Wirel. Commun. Lett. 2020, 9, 244–248. [Google Scholar] [CrossRef]
- Nadeem, Q.U.A.; Kammoun, A.; Debbah, M.; Alouini, M.S. A Generalized Spatial Correlation Model for 3D MIMO Channels Based on the Fourier Coefficients of Power Spectrums. IEEE Trans. Signal Process. 2015, 63, 3671–3686. [Google Scholar] [CrossRef]
- Yu, H.; Tuan, H.D.; Duong, T.Q.; Poor, H.V.; Fang, Y. Optimization for Signal Transmission and Reception in a Macrocell of Heterogeneous Uplinks and Downlinks. IEEE Trans. Commun. 2020, 68, 7054–7067. [Google Scholar] [CrossRef]
- Tam, H.H.M.; Tuan, H.D.; Ngo, D.T. Successive Convex Quadratic Programming for Quality-of-Service Management in Full-Duplex MU-MIMO Multicell Networks. IEEE Trans. Commun. 2016, 64, 2340–2353. [Google Scholar] [CrossRef]
Algorithm 1 | Algorithm 2 | Algorithm 3 |
---|---|---|
4.74 h | 4.87 h | 0.19 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Q.; Chen, Y.; Huang, Z.; Yu, H.; Fang, Y. Low-Resolution Optimization for an Unmanned Aerial Vehicle Communication Network under a Passive Reconfigurable Intelligent Surface and Active Reconfigurable Intelligent Surface. Electronics 2024, 13, 1826. https://doi.org/10.3390/electronics13101826
Yang Q, Chen Y, Huang Z, Yu H, Fang Y. Low-Resolution Optimization for an Unmanned Aerial Vehicle Communication Network under a Passive Reconfigurable Intelligent Surface and Active Reconfigurable Intelligent Surface. Electronics. 2024; 13(10):1826. https://doi.org/10.3390/electronics13101826
Chicago/Turabian StyleYang, Qiangqiang, Yufeng Chen, Zhiyu Huang, Hongwen Yu, and Yong Fang. 2024. "Low-Resolution Optimization for an Unmanned Aerial Vehicle Communication Network under a Passive Reconfigurable Intelligent Surface and Active Reconfigurable Intelligent Surface" Electronics 13, no. 10: 1826. https://doi.org/10.3390/electronics13101826
APA StyleYang, Q., Chen, Y., Huang, Z., Yu, H., & Fang, Y. (2024). Low-Resolution Optimization for an Unmanned Aerial Vehicle Communication Network under a Passive Reconfigurable Intelligent Surface and Active Reconfigurable Intelligent Surface. Electronics, 13(10), 1826. https://doi.org/10.3390/electronics13101826