Multi-User Detection Based on Improved Cheetah Optimization Algorithm
Abstract
:1. Introduction
2. Methods
2.1. Robust Multi-User Detection Model
2.2. Cheetah Optimization Algorithm
- If the cheetah hunt fails to converge, the CO algorithm then randomly selects the location of one cheetah as the prey location.
- In the absence of successful hunting actions for a period, the hunt is reset, prompting the cheetahs to return to their starting positions in preparation for the next hunt. The algorithm sets the condition that when the cheetah’s energy drops and the leader’s position remains unchanged, the cheetah will go home and update the leader’s position to prevent falling into local convergence. This strategy can enhance the algorithm’s ability to search globally.
2.3. Differential Evolution Algorithm
- Initialize the population
- 2.
- Mutation
- 3.
- Crossover
- 4.
- Selection
2.4. Improved Cheetah Optimization Algorithm
2.4.1. Control Parameter Update Strategy
2.4.2. Individual Location Update Strategy
2.5. Robust Multi-User Detection Implementation
Algorithm 1. The HCO algorithm |
|
3. Results and Discussion
3.1. Initialization Parameter Test of the Algorithm
3.2. Performance Testing of the Algorithm
- Investigate the correlation between the algorithm’s BER and the iteration count in an α-stable noise environment.
- 2.
- Analyze the relationship between the algorithm’s BER and the generalized SNR in an α-stable noise environment.
- 3.
- Analyze the relationship between the BER of the algorithms and the near-far ratio under the α-stable noise environment.
- 4.
- Analyze the relationship between the BER of the algorithms and the number of users in the α-stable noise environment.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sivalingam, T.; Ali, S.; Huda Mahmood, N.; Rajatheva, N.; Latva-Aho, M. Deep Neural Network-Based Blind Multiple User Detection for Grant-Free Multi-User Shared Access. In Proceedings of the 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Helsinki, Finland, 13–16 September 2021; pp. 1–7. [Google Scholar]
- Emir, A.; Kara, F.; Kaya, H.; Yanikomeroglu, H. DeepMuD: Multi-User Detection for Uplink Grant-Free NOMA IoT Networks via Deep Learning. IEEE Wirel. Commun. Lett. 2021, 10, 1133–1137. [Google Scholar] [CrossRef]
- Abbas, S.; Adnan Khan, M.; Ata, A.; Ahmad, G.; Saeed, A.; Anwar, N. Multi User Detection Using Fuzzy Logic Empowered Adaptive Back Propagation Neural Network. NNW 2019, 29, 381–401. [Google Scholar] [CrossRef]
- Xie, H.; Qin, Z.; Tao, X.; Letaief, K.B. Task-Oriented Multi-User Semantic Communications. IEEE J. Sel. Areas Commun. 2022, 40, 2584–2597. [Google Scholar] [CrossRef]
- Li, W.; Liang, H.; Dong, C.; Xu, X.; Zhang, P.; Liu, K. Non-Orthogonal Multiple Access Enhanced Multi-User Semantic Communication. IEEE Trans. Cogn. Commun. Netw. 2023, 9, 1438–1453. [Google Scholar] [CrossRef]
- Ngo, K.-H.; Guillaud, M.; Decurninge, A.; Yang, S.; Schniter, P. Multi-User Detection Based on Expectation Propagation for the Non-Coherent SIMO Multiple Access Channel. IEEE Trans. Wirel. Commun. 2020, 19, 6145–6161. [Google Scholar] [CrossRef]
- Wang, B.; Dai, L.; Zhang, Y.; Mir, T.; Li, J. Dynamic Compressive Sensing-Based Multi-User Detection for Uplink Grant-Free NOMA. IEEE Commun. Lett. 2016, 20, 2320–2323. [Google Scholar] [CrossRef]
- Shen, B.; Wu, H.; Cui, T.; Chen, Q. An Optimal Number of Indices Aided gOMP Algorithm for Multi-user Detection in NOMA System. J. Electron. Inf. Technol. 2020, 42, 621–628. [Google Scholar] [CrossRef]
- Sreesudha, P.; Malleswari, B.L. A Hybridization Approach of PSO and GSO Algorithm for Minimum-BER Based Multi-User Detection in STBC-MIMO MC-CDMA Systems. Multimed. Tools Appl. 2021, 80, 31967–31992. [Google Scholar] [CrossRef]
- Khafaji, M.J.; Krasicki, M. Successive-Interference-Cancellation-Inspired Multi-User MIMO Detector Driven by Genetic Algorithm. In Theory and Applications of Dependable Computer Systems; Zamojski, W., Mazurkiewicz, J., Sugier, J., Walkowiak, T., Kacprzyk, J., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 315–324. [Google Scholar]
- Chiali, I.; Debbat, F.; Bendimerad, F.T. A Novel Multiuser Detection Based on Honey Bees Mating Optimisation and Tabu Search Algorithm for SDMA-OFDM Systems. Int. J. Wirel. Mob. Comput. 2020, 19, 224–235. [Google Scholar] [CrossRef]
- Wu, T.; Jing, X. Exploration of Multiple Access Interference Suppression Based on Multi-User Detection. Chin. J. Electron. 2019, 28, 835–840. [Google Scholar] [CrossRef]
- Sun, X.; Fan, Z.; Ji, Y.; Wang, S.; Yan, S.; Wu, S.; Fu, Q.; Ghazali, K.H. Robust Multi-user Detection Based on Hybrid Grey Wolf Optimization. Concurr. Comput. Pract. Expert 2021, 33, e5273. [Google Scholar] [CrossRef]
- Yang, Z.; Pang, Y.; Li, Q.; Wei, S.; Wang, R.; Xiao, Y. A Model for Early Rumor Detection Base on Topic-Derived Domain Compensation and Multi-User Association. Expert Syst. Appl. 2024, 250, 123951. [Google Scholar] [CrossRef]
- Baeza, V.M.; Armada, A.G. Noncoherent Massive MIMO. In Wiley 5G Ref; Tafazolli, R., Wang, C., Chatzimisios, P., Eds.; Wiley: Hoboken, NJ, USA, 2020; pp. 1–28. ISBN 978-1-119-47150-9. [Google Scholar]
- Akbari, M.A.; Zare, M.; Azizipanah-abarghooee, R.; Mirjalili, S.; Deriche, M. The Cheetah Optimizer: A Nature-Inspired Metaheuristic Algorithm for Large-Scale Optimization Problems. Sci. Rep. 2022, 12, 10953. [Google Scholar] [CrossRef] [PubMed]
- Ghaedi, H.; Kamel Tabbakh Farizani, S.R.; Gaemi, R. A Novel Meta-Heuristic Framework for Solving Power Theft Detection Problem: Cheetah Optimization Algorithm. Int. J. Ind. Electron. Control Optim. 2022, 5, 63–76. [Google Scholar] [CrossRef]
- Vijay, M.M.; Sunil, J.; Vincy, V.G.A.G.; IjazKhan, M.; Abdullaev, S.S.; Eldin, S.M.; Govindan, V.; Ahmad, H.; Askar, S. Underwater Wireless Sensor Network-Based Multihop Data Transmission Using Hybrid Cat Cheetah Optimization Algorithm. Sci. Rep. 2023, 13, 10810. [Google Scholar] [CrossRef] [PubMed]
- El Romeh, A.; Mirjalili, S. Theoretical Framework and Practical Considerations for Achieving Superior Multi-Robot Exploration: Hybrid Cheetah Optimization with Intelligent Initial Configurations. Mathematics 2023, 11, 4239. [Google Scholar] [CrossRef]
- Abd Elaziz, M.; Ghoneimi, A.; Nabih, M.; Bakry, A.; Al-Betar, M.A. Contribution of Fluid Substitution and Cheetah Optimizer Algorithm in Predicting Rock-Physics Parameters of Gas-Bearing Reservoirs in the Eastern Mediterranean Sea, Egypt. Nat. Resour. Res. 2023, 32, 1987–2005. [Google Scholar] [CrossRef]
- Mundotiya, P.; Bhadu, M.; Tiwari, H. Hydro-Thermal Scheduling under RE Uncertainties Using an Improved Cheetah Optimization. Electr. Eng. 2024, 1–32. [Google Scholar] [CrossRef]
- Li, J.-Y.; Zhan, Z.-H.; Tan, K.C.; Zhang, J. A Meta-Knowledge Transfer-Based Differential Evolution for Multitask Optimization. IEEE Trans. Evol. Computat. 2022, 26, 719–734. [Google Scholar] [CrossRef]
- Zhao, X.; Feng, S.; Hao, J.; Zuo, X.; Zhang, Y. Neighborhood Opposition-Based Differential Evolution with Gaussian Perturbation. Soft Comput. 2021, 25, 27–46. [Google Scholar] [CrossRef]
- Shengdong, X.; Mingsheng, Z.; Sainan, Z. Research on the Performance of the Time Delay Estimation in the Multi-Path Wireless Channel Based on Super-Resolution Algorithms. J. Converg. Inf. Technol. 2012, 7, 416–423. [Google Scholar] [CrossRef]
- Gao, H.; Liu, Y.; Diao, M. Robust Multi-User Detection Based on Quantum Bee Colony Optimisation. Int. J. Innov. Comput. Appl. 2011, 3, 160–168. [Google Scholar] [CrossRef]
- Okwu, M.O.; Tartibu, L.K. Genetic Algorithm. In Metaheuristic Optimization: Nature-Inspired Algorithms Swarm and Computational Intelligence, Theory and Applications; Okwu, M.O., Tartibu, L.K., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 125–132. ISBN 978-3-030-61111-8. [Google Scholar]
- Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S. An Improved Grey Wolf Optimizer for Solving Engineering Problems. Expert Syst. Appl. 2021, 166, 113917. [Google Scholar] [CrossRef]
- Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper Optimisation Algorithm: Theory and Application. Adv. Eng. Softw. 2017, 105, 30–47. [Google Scholar] [CrossRef]
- Yang, W.; Xia, K.; Fan, S.; Wang, L.; Li, T.; Zhang, J.; Feng, Y. A Multi-Strategy Whale Optimization Algorithm and Its Application. Eng. Appl. Artif. Intell. 2022, 108, 104558. [Google Scholar] [CrossRef]
- Li, S.; Gong, W.; Wang, L.; Yan, X.; Hu, C. Optimal Power Flow by Means of Improved Adaptive Differential Evolution. Energy 2020, 198, 117314. [Google Scholar] [CrossRef]
Abbreviation | Full From |
---|---|
HCO | Hybrid Cheetah Optimizer |
CO | Cheetah Optimizer |
BER | Bit Error Rate |
NP | Non-deterministic Polynomial-time |
DE | Differential Evolution |
GA | Genetic Algorithm |
GWO | Grey Wolf Optimization |
GOA | Grasshopper Optimization Algorithm |
WOA | Whale Optimization Algorithm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Ji, Y.; Sun, X. Multi-User Detection Based on Improved Cheetah Optimization Algorithm. Electronics 2024, 13, 1842. https://doi.org/10.3390/electronics13101842
Chen S, Ji Y, Sun X. Multi-User Detection Based on Improved Cheetah Optimization Algorithm. Electronics. 2024; 13(10):1842. https://doi.org/10.3390/electronics13101842
Chicago/Turabian StyleChen, Shuang, Yuanfa Ji, and Xiyan Sun. 2024. "Multi-User Detection Based on Improved Cheetah Optimization Algorithm" Electronics 13, no. 10: 1842. https://doi.org/10.3390/electronics13101842
APA StyleChen, S., Ji, Y., & Sun, X. (2024). Multi-User Detection Based on Improved Cheetah Optimization Algorithm. Electronics, 13(10), 1842. https://doi.org/10.3390/electronics13101842