Value-Guided Adaptive Data Augmentation for Imbalanced Small Object Detection
Abstract
:1. Introduction
- Instead of extensive data-driven black-box training, we give a tri-sampling-based simple and explainable data augmentation framework for imbalanced small object detection. Specifically, we introduce the learnability and scarcity of data and formulate the quantity-based necessity and scale-based learnability to characterize object-relevant value without training. This is capable of reasonably reflecting which object instances need and deserve augmentation as well.
- Instead of extending all small object instances with equal probability, we leverage the distribution of the attained object value as guidance to sample out the objects to be augmented. Then, those valuable objects, which are learnable and scanty, will be expanded with high probability, and vice versa. Therefore, on the premise of ensuring the diversity of the expanded samples, invalid or unnecessary expansion was avoided.
- Aimed at averting the interference of extremely complex contexts, we paste the selected objects to the relatively uniform areas of new scene images. This considers both the diversity and low interference of contexts. In addition, after the objects are pasted onto the background, the spurious correlation between objects and the scenes is broken. This is beneficial to enhance the generalization and robustness. Experimental results demonstrate that compared with others, the proposed method exhibits obvious superiority.
2. Materials and Methods
2.1. Scale-Imbalanced Small Object Detection
2.2. Copy and Paste Based Data Augmentation
3. Our Method
3.1. Problem Formulation
Algorithm 1 ValCopy-Paste Algorithm |
|
3.2. Establishment of Object Value Criteria
3.3. Learnability and Scarcity Based Object Value Distribution
3.4. Tri-Sampling-Based Generation of Augmented Training Images
4. Experiments
4.1. Dataset and Comparison Methods
4.2. Baseline and Evaluation Metrics
4.3. Experimental Setting
4.4. Parameter Impact Analysis
4.5. Ablation Experiments
4.6. Comparison
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kar, O.F.; Yeo, T.; Atanov, A.; Zamir, A. 3D Common Corruptions and Data Augmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 18963–18974. [Google Scholar]
- Zhang, Z.; Qiao, S.; Xie, C.; Shen, W.; Wang, B.; Yuille, A.L. Single-shot object detection with enriched semantics. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5813–5821. [Google Scholar]
- Guo, J.; Han, K.; Wang, Y.; Wu, H.; Chen, X.; Xu, C.; Xu, C. Distilling Object Detectors via Decoupled Features. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 2154–2164. [Google Scholar]
- Ge, Z.; Liu, S.; Li, Z.; Yoshie, O.; Sun, J. OTA: Optimal Transport Assignment for Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 303–312. [Google Scholar]
- Joseph, K.J.; Khan, S.; Khan, F.S.; Balasubramanian, V.N. Towards Open World Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 5830–5840. [Google Scholar]
- Ma, Y.; Liu, S.; Li, Z.; Sun, J. IQDet: Instance-Wise Quality Distribution Sampling for Object Detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 1717–1725. [Google Scholar]
- Zou, Z.; Shi, Z.; Guo, Y.; Ye, J. Object detection in 20 years: A survey. arXiv 2019, arXiv:1905.05055. [Google Scholar] [CrossRef]
- Jiao, L.; Zhang, F.; Liu, F.; Yang, S.; Li, L.; Feng, Z.; Qu, R. A survey of deep learning-based object detection. IEEE Access 2019, 7, 128837–128868. [Google Scholar] [CrossRef]
- Shen, R.; Bubeck, S.; Gunasekar, S. Data augmentation as feature manipulation. In Proceedings of the International Conference on Machine Learning, Baltimore, MD, USA, 17–23 July 2022; pp. 19773–19808. [Google Scholar]
- Leng, Z.; Cheng, S.; Caine, B.; Wang, W.; Zhang, X.; Shlens, J.; Tan, M.; Anguelov, D. PseudoAugment: Learning to Use Unlabeled Data for Data Augmentation in Point Clouds. In Proceedings of the European Conference on Computer Vision, Tel Aviv, Israel, 23–27 October 2022; pp. 555–572. [Google Scholar]
- Yang, Y.; Zhang, X.; Guan, Q.; Lin, Y. Making Invisible Visible: Data-Driven Seismic Inversion with Spatio-Temporally Constrained Data Augmentation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Atienza, R. Improving Model Generalization by Agreement of Learned Representations from Data Augmentation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2022; pp. 372–381. [Google Scholar]
- Kisantal, M.; Wojna, Z.; Murawski, J.; Naruniec, J.; Cho, K. Augmentation for small object detection. arXiv 2019, arXiv:1902.07296. [Google Scholar]
- Bai, Y.; Yang, Y.; Zhang, W.; Mei, T. Directional Self-Supervised Learning for Heavy Image Augmentations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA, 18–24 June 2022; pp. 16692–16701. [Google Scholar]
- Li, W.; Chen, J.; Cao, J.; Ma, C.; Wang, J.; Cui, X.; Chen, P. EID-GAN: Generative Adversarial Nets for Extremely Imbalanced Data Augmentation. IEEE Trans. Ind. Inform. 2022, 19, 3208–3218. [Google Scholar] [CrossRef]
- Lim, J.S.; Astrid, M.; Yoon, H.J.; Lee, S.I. Small object detection using context and attention. In Proceedings of the 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Jeju Island, Republic of Korea, 13–16 April 2021; pp. 181–186. [Google Scholar]
- Van Dyk, D.A.; Meng, X.L. The art of data augmentation. J. Comput. Graph. Stat. 2001, 10, 1–50. [Google Scholar] [CrossRef]
- Rebuffi, S.A.; Gowal, S.; Calian, D.A.; Stimberg, F.; Wiles, O.; Mann, T.A. Data augmentation can improve robustness. Adv. Neural Inf. Process. Syst. 2021, 34, 29935–29948. [Google Scholar]
- Lim, S.; Kim, I.; Kim, T.; Kim, C.; Kim, S. Fast autoaugment. Adv. Neural Inf. Process. Syst. 2019, 32, 6665–6675. [Google Scholar]
- Cubuk, E.D.; Zoph, B.; Shlens, J.; Le, Q.V. Randaugment: Practical automated data augmentation with a reduced search space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 702–703. [Google Scholar]
- Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 1–48. [Google Scholar] [CrossRef]
- Cui, W.; Yan, S. Isotonic Data Augmentation for Knowledge Distillation. arXiv 2021, arXiv:2107.01412. [Google Scholar]
- Oksuz, K.; Cam, B.C.; Kalkan, S.; Akbas, E. Imbalance Problems in Object Detection: A Review. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 3388–3415. [Google Scholar] [CrossRef]
- Hataya, R.; Zdenek, J.; Yoshizoe, K.; Nakayama, H. Meta approach to data augmentation optimization. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2022; pp. 2574–2583. [Google Scholar]
- Ni, R.; Goldblum, M.; Sharaf, A.; Kong, K.; Goldstein, T. Data augmentation for meta-learning. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 8152–8161. [Google Scholar]
- Liu, J.; Chao, F.; Lin, C.M. Task augmentation by rotating for meta-learning. arXiv 2020, arXiv:2003.00804. [Google Scholar]
- Qin, Y.; Zhao, C.; Wang, Z.; Xing, J.; Wan, J.; Lei, Z. Representation based and Attention augmented Meta learning. arXiv 2018, arXiv:1811.07545. [Google Scholar]
- Yao, H.; Huang, L.K.; Zhang, L.; Wei, Y.; Tian, L.; Zou, J.; Huang, J. Improving generalization in meta-learning via task augmentation. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 11887–11897. [Google Scholar]
- Bird, J.J.; Barnes, C.M.; Manso, L.J.; Ekárt, A.; Faria, D.R. Fruit quality and defect image classification with conditional GAN data augmentation. Sci. Hortic. 2022, 293, 110684. [Google Scholar] [CrossRef]
- Lim, S.K.; Loo, Y.; Tran, N.T.; Cheung, N.M.; Roig, G.; Elovici, Y. Doping: Generative data augmentation for unsupervised anomaly detection with gan. In Proceedings of the 2018 IEEE International Conference on Data Mining (ICDM), Singapore, 17–20 November 2018; pp. 1122–1127. [Google Scholar]
- Ntelemis, F.; Jin, Y.; Thomas, S.A. Image Clustering Using an Augmented Generative Adversarial Network and Information Maximization. IEEE Trans. Neural Netw. Learn. Syst. 2021, 33, 7461–7474. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chai, Y.; Cui, T.; Wang, C.; Zhang, B.; Li, Y.; An, Y. Restrained Generative Adversarial Network against Overfitting in Numeric Data Augmentation. arXiv 2020, arXiv:2010.13549. [Google Scholar]
- Golovneva, O.; Peris, C. Generative Adversarial Networks for Annotated Data Augmentation in Data Sparse NLU. arXiv 2020, arXiv:2012.05302. [Google Scholar]
- Hansen, N.; Su, H.; Wang, X. Stabilizing Deep Q-Learning with ConvNets and Vision Transformers under Data Augmentation. In Proceedings of the Advances in Neural Information Processing Systems, Virtual, 6–14 December 2021; Volume 34, pp. 3680–3693. [Google Scholar]
- Kostrikov, I.; Yarats, D.; Fergus, R. Image augmentation is all you need: Regularizing deep reinforcement learning from pixels. arXiv 2020, arXiv:2004.13649. [Google Scholar]
- Cubuk, E.D.; Zoph, B.; Mane, D.; Vasudevan, V.; Le, Q.V. Autoaugment: Learning augmentation strategies from data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 113–123. [Google Scholar]
- Dwibedi, D.; Misra, I.; Hebert, M. Cut, paste and learn: Surprisingly easy synthesis for instance detection. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 1301–1310. [Google Scholar]
- DeVries, T.; Taylor, G.W. Improved regularization of convolutional neural networks with cutout. arXiv 2017, arXiv:1708.04552. [Google Scholar]
- Yun, S.; Han, D.; Oh, S.J.; Chun, S.; Choe, J.; Yoo, Y. Cutmix: Regularization strategy to train strong classifiers with localizable features. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 6023–6032. [Google Scholar]
- Zhong, Z.; Zheng, L.; Kang, G.; Li, S.; Yang, Y. Random erasing data augmentation. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 13001–13008. [Google Scholar]
- Ghiasi, G.; Cui, Y.; Srinivas, A.; Qian, R.; Lin, T.Y.; Cubuk, E.D.; Le, Q.V.; Zoph, B. Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 2917–2927. [Google Scholar]
- Li, J.; Liang, X.; Wei, Y.; Xu, T.; Feng, J.; Yan, S. Perceptual generative adversarial networks for small object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1222–1230. [Google Scholar]
- Noh, J.; Bae, W.; Lee, W.; Seo, J.; Kim, G. Better to Follow, Follow to Be Better: Towards Precise Supervision of Feature Super-Resolution for Small Object Detection. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9724–9733. [Google Scholar]
- Liu, S.; Huang, D.; Wang, Y. Learning spatial fusion for single-shot object detection. arXiv 2019, arXiv:1911.09516. [Google Scholar]
- Cui, L.; Ma, R.; Lv, P.; Jiang, X.; Gao, Z.; Zhou, B.; Xu, M. MDSSD: Multi-scale deconvolutional single shot detector for small objects. arXiv 2018, arXiv:1805.07009. [Google Scholar] [CrossRef]
- Fu, C.Y.; Liu, W.; Ranga, A.; Tyagi, A.; Berg, A.C. Dssd: Deconvolutional single shot detector. arXiv 2017, arXiv:1701.06659. [Google Scholar]
- Cao, G.; Xie, X.; Yang, W.; Liao, Q.; Shi, G.; Wu, J. Feature-fused SSD: Fast detection for small objects. In Proceedings of the Ninth International Conference on Graphic and Image Processing (ICGIP 2017), Qingdao, China, 14–16 October 2017; Volume 10615, p. 106151E. [Google Scholar]
- Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [Google Scholar]
- Guo, C.; Fan, B.; Zhang, Q.; Xiang, S.; Pan, C. Augfpn: Improving multi-scale feature learning for object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 12595–12604. [Google Scholar]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Ghiasi, G.; Lin, T.Y.; Le, Q.V. NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 7029–7038. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Dvornik, N.; Mairal, J.; Schmid, C. Modeling visual context is key to augmenting object detection datasets. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 364–380. [Google Scholar]
- Fang, H.S.; Sun, J.; Wang, R.; Gou, M.; Li, Y.L.; Lu, C. Instaboost: Boosting instance segmentation via probability map guided copy-pasting. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 682–691. [Google Scholar]
- Geirhos, R.; Jacobsen, J.H.; Michaelis, C.; Zemel, R.; Brendel, W.; Bethge, M.; Wichmann, F.A. Shortcut learning in deep neural networks. Nat. Mach. Intell. 2020, 2, 665–673. [Google Scholar] [CrossRef]
- Walker, A.J. New fast method for generating discrete random numbers with arbitrary frequency distributions. Electron. Lett. 1974, 10, 127–128. [Google Scholar] [CrossRef]
- Chen, P.; Liu, S.; Zhao, H.; Jia, J. Gridmask data augmentation. arXiv 2020, arXiv:2001.04086. [Google Scholar]
- Everingham, M.; Eslami, S.M.A.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes Challenge: A Retrospective. Int. J. Comput. Vis. 2015, 111, 98–136. [Google Scholar] [CrossRef]
- Chen, X.; Fang, H.; Lin, T.Y.; Vedantam, R.; Gupta, S.; Dollar, P.; Zitnick, C.L. Microsoft COCO Captions: Data Collection and Evaluation Server. arXiv 2015, arXiv:1504.00325. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. arXiv 2016, arXiv:1512.02325. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 2015, 28, 91–99. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778. [Google Scholar]
- Huang, J.; Rathod, V.; Sun, C.; Zhu, M.; Korattikara, A.; Fathi, A.; Fischer, I.; Wojna, Z.; Song, Y.; Guadarrama, S.; et al. Speed/accuracy trade-offs for modern convolutional object detectors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 7310–7311. [Google Scholar]
N | Total number of small object instances |
M | Total number of background images |
The ith small object instance | |
The jth background image | |
The kth flat region from | |
The value of | |
Total number of small objects in the same class as | |
Area occupied by the bounding box of |
AP (%) | Lr | |||||||
---|---|---|---|---|---|---|---|---|
0.002 | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | ||
C | 1 | 43.6 | 43.9 | 43.6 | 43.2 | 43.2 | 42.6 | 42.4 |
2 | 43.5 | 43.5 | 43.2 | 42.9 | 42.3 | 42.1 | 41.7 | |
3 | 43.3 | 43.2 | 42.6 | 42.1 | 41.6 | 41.6 | 41.4 | |
4 | 42.9 | 42.9 | 42.5 | 41.9 | 41.4 | 41.2 | 40.7 |
AP (%) | Lr | |||||||
---|---|---|---|---|---|---|---|---|
0.002 | 0.003 | 0.004 | 0.005 | 0.006 | 0.007 | 0.008 | ||
C | 1 | 49.0 | 49.6 | 49.3 | 48.9 | 49.5 | 49.6 | 49.2 |
2 | 49.1 | 48.9 | 48.5 | 49.2 | 49.3 | 48.8 | 48.6 | |
3 | 48.1 | 48.1 | 48.1 | 48.6 | 48.6 | 48.6 | 48.2 | |
4 | 47.8 | 47.6 | 48.3 | 48.0 | 47.6 | 47.4 | 46.5 |
Strategy | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SSD+Baseline | 9.4 | 27.7 | 51.1 | 5.5 | 22.8 | 31.7 | 51.1 | 13.7 | 42.4 | 56.6 | 79.9 | 3.4 | 23.0 | 31.6 | 56.7 |
SSD+RI+FA | 6.9 | 22.6 | 47.4 | 3.7 | 18.4 | 26.2 | 47.4 | 10.1 | 36.3 | 47.1 | 76.8 | 1.2 | 16.9 | 25.5 | 51.1 |
SSD+VGI+RA | 7.0 | 22.4 | 46.0 | 4.7 | 18.4 | 25.9 | 46.0 | 11.3 | 36.0 | 48.2 | 75.2 | 3.2 | 15.8 | 24.0 | 48.9 |
SSD+VGI+FA (Ours) | 10.4 | 27.9 | 50.9 | 5.9 | 22.6 | 32.2 | 50.9 | 13.5 | 42.3 | 57.0 | 79.9 | 3.8 | 21.4 | 32.5 | 55.9 |
Faster-RCNN+Baseline | 20.9 | 40.1 | 55.4 | 17.8 | 5.6 | 43.8 | 55.4 | 36.4 | 60.3 | 70.8 | 84.6 | 14.4 | 36.2 | 47.2 | 62.1 |
Faster-RCNN+RI+FA | 21.8 | 39.4 | 54.9 | 16.7 | 35.4 | 42.4 | 54.9 | 34.6 | 59.2 | 68.1 | 83.7 | 13.6 | 37.7 | 45.7 | 61.2 |
Faster-RCNN+VGI+RA | 22.3 | 38.8 | 55.3 | 16.8 | 35.6 | 42.2 | 55.3 | 33.7 | 58.9 | 68.5 | 83.6 | 14.3 | 36.8 | 45.4 | 62.0 |
Faster-RCNN+VGI+FA (Ours) | 22.4 | 40.3 | 53.9 | 17.5 | 36.1 | 44.5 | 53.9 | 36.3 | 62.0 | 71.0 | 83.5 | 14.5 | 39.1 | 48.5 | 59.9 |
Method | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Baseline [61] | 20.9 | 40.1 | 55.4 | 17.8 | 35.6 | 43.8 | 55.4 | 36.4 | 60.3 | 70.8 | 84.6 | 14.4 | 36.2 | 47.2 | 62.1 |
None copy and paste families | |||||||||||||||
Cutout [38] | 19.6 | 39.6 | 55.2 | 16.2 | 35.1 | 43.0 | 55.2 | 33.7 | 60.4 | 69.7 | 84.5 | 13.2 | 37.1 | 47.3 | 62.2 |
GridMask [57] | 21.1 | 40.0 | 55.0 | 17.4 | 35.0 | 44.1 | 55.0 | 35.3 | 59.5 | 70.4 | 84.6 | 12.8 | 38.6 | 48.8 | 61.7 |
Cutmix [39] | 19.9 | 39.4 | 53.8 | 17.1 | 34.1 | 43.7 | 53.8 | 34.6 | 58.5 | 71.0 | 83.7 | 13.5 | 36.5 | 46.8 | 60.5 |
Copy and paste families | |||||||||||||||
Augsmall [13] | 21.1 | 39.9 | 54.3 | 15.8 | 34.7 | 43.8 | 54.3 | 34.1 | 59.9 | 71.0 | 84.0 | 12.1 | 36.4 | 47.1 | 60.5 |
CopyPaste [41] | 21.9 | 38.3 | 52.3 | 16.2 | 33.6 | 42.3 | 52.3 | 36.1 | 58.8 | 69.0 | 82.6 | 13.8 | 34.0 | 45.5 | 58.2 |
Ours | 22.4 | 40.3 | 53.9 | 17.5 | 36.1 | 44.5 | 53.9 | 36.3 | 62.0 | 71.0 | 83.5 | 14.5 | 39.1 | 48.5 | 59.9 |
Method | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Baseline [61] | 10.9 | 28.9 | 40.4 | 9.2 | 24.1 | 34.7 | 40.4 | 17.9 | 40.3 | 55.6 | 62.4 | 8.5 | 25.8 | 37.3 | 43.4 |
None copy and paste families | |||||||||||||||
Cutout [38] | 10.9 | 27.6 | 41.0 | 9.3 | 22.9 | 33.6 | 41.0 | 17.8 | 38.8 | 55.1 | 63.2 | 8.7 | 24.1 | 35.1 | 43.7 |
GridMask [57] | 11.1 | 27.8 | 39.0 | 9.3 | 23.2 | 33.6 | 39.0 | 18.0 | 39.7 | 54.6 | 61.0 | 8.4 | 23.9 | 35.7 | 41.9 |
Cutmix [39] | 11.0 | 27.5 | 37.4 | 9.3 | 23.3 | 32.9 | 37.4 | 18.0 | 39.5 | 53.3 | 59.1 | 8.8 | 24.2 | 35.4 | 39.9 |
Copy and paste families | |||||||||||||||
Augsmall [13] | 11.3 | 28.2 | 40.2 | 9.2 | 23.6 | 33.8 | 40.3 | 17.7 | 39.6 | 53.9 | 62.3 | 9.0 | 25.0 | 36.3 | 43.3 |
CopyPaste [41] | 9.7 | 26.5 | 37.2 | 8.6 | 21.7 | 32.2 | 37.2 | 17.1 | 37.6 | 52.8 | 59.1 | 8.0 | 22.4 | 34.4 | 39.7 |
Ours | 11.2 | 29.2 | 39.9 | 10.2 | 24.4 | 34.3 | 39.9 | 20.2 | 41.7 | 57.4 | 63.4 | 9.0 | 25.7 | 36.2 | 43.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Sui, C.; Jiang, F.; Li, S.; Liu, H.; Wang, A. Value-Guided Adaptive Data Augmentation for Imbalanced Small Object Detection. Electronics 2024, 13, 1849. https://doi.org/10.3390/electronics13101849
Wang H, Sui C, Jiang F, Li S, Liu H, Wang A. Value-Guided Adaptive Data Augmentation for Imbalanced Small Object Detection. Electronics. 2024; 13(10):1849. https://doi.org/10.3390/electronics13101849
Chicago/Turabian StyleWang, Haipeng, Chenhong Sui, Fuhao Jiang, Shuai Li, Hao Liu, and Ao Wang. 2024. "Value-Guided Adaptive Data Augmentation for Imbalanced Small Object Detection" Electronics 13, no. 10: 1849. https://doi.org/10.3390/electronics13101849
APA StyleWang, H., Sui, C., Jiang, F., Li, S., Liu, H., & Wang, A. (2024). Value-Guided Adaptive Data Augmentation for Imbalanced Small Object Detection. Electronics, 13(10), 1849. https://doi.org/10.3390/electronics13101849