Self-Frequency Tracking for Fixed-Ratio Switch-Capacitors in Data Center Application without Extra Sensors
Abstract
:1. Introduction
2. Circuit, Operations, and the Algorithm
2.1. Circuit
2.2. Operations
2.3. Challenges
2.4. Algorithm
3. Simulation
4. Discussion Results
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- International Energy Agency (IEA). Tracking Data Centres and Data Transmission Networks 2020; IEA: Paris, France, 2020. [Google Scholar]
- Jijuan, L.; Lirong, H.; Miaohong, X.; Chi, Z.; Dewei, L. The Application of Data Mining and Fusion Technology in the Security Management of Sensitive Data in Data Center. In Proceedings of the 2021 IEEE International Conference on Data Science and Computer Application (ICDSCA), Dalian, China, 29–31 October 2021; pp. 464–467. [Google Scholar] [CrossRef]
- Jones, N. How to stop data centres from gobbling up the world’s electricity. Nature 2018, 561, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Li, W.; Zhang, R.; Zhang, Q.; Yang, C. A Large Scale Data Transmission Control Mechanism across Data Centers. In Proceedings of the 2017 Fifth International Conference on Advanced Cloud and Big Data (CBD), Shanghai, China, 13–16 August 2017; pp. 20–25. [Google Scholar] [CrossRef]
- Jiang, S.; Saggini, S.; Nan, C.; Li, X.; Chung, C.; Yazdani, M. Switched Tank Converters. IEEE Trans. Power Electron. 2019, 34, 5048–5062. [Google Scholar] [CrossRef]
- Ye, Z.; Lei, Y.; Pilawa-Podgurski, R.C.N. A 48-to-12 V Cascaded Resonant Switched-Capacitor Converter for Data Centers with 99% Peak Efficiency and 2500 W/in3 Power Density. In Proceedings of the 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 17–21 March 2019; pp. 13–18. [Google Scholar] [CrossRef]
- Zhu, Y.; Ye, Z.; Pilawa-Podgurski, R.C.N. Modeling and Analysis of Switched-Capacitor Converters With Finite Terminal Capacitances. IEEE Trans. Power Electron. 2024, 39, 6640–6653. [Google Scholar] [CrossRef]
- Ge, T.; Ye, Z.; Abramson, R.A.; Pilawa-Podgurski, R.C.N. A 48-to-12 V Cascaded Resonant Switched-Capacitor Converter Achieving 4068 W/in3 Power Density and 99.0% Peak Efficiency. In Proceedings of the 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), Phoenix, AZ, USA, 14–17 June 2021; pp. 1335–1342. [Google Scholar] [CrossRef]
- Ye, Z.; Lei, Y.; Pilawa-Podgurski, R.C.N. A resonant switched capacitor based 4-to-1 bus converter achieving 2180 W/in3 power density and 98.9% peak efficiency. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 121–126. [Google Scholar] [CrossRef]
- Ye, Z.; Lei, Y.; Pilawa-Podgurski, R.C.N. The Cascaded Resonant Converter: A Hybrid Switched-Capacitor Topology With High Power Density and Efficiency. IEEE Trans. Power Electron. 2020, 35, 4946–4958. [Google Scholar] [CrossRef]
- Vicor Corporation. The PI33XX: Zero-Voltage Switching Applied to Buck Regulation; Vicor Corporation: Andover, MA, USA, 2012. [Google Scholar]
- Infineon Technologies AG. Solving the Power Density Challenge: How Innovation in Power Management Enable Artificial Intelligence in Hyperscale Datacenters; Infineon Technologies AG: Neubiberg, Germany, 2020. [Google Scholar]
- Jiang, C.Q.; Li, X.R.; Ghosh, S.S.; Zhao, H.; Shen, Y.F.; Long, T. Nanocrystalline Powder Cores for High-Power High-Frequency Power Electronics Applications. IEEE Trans. Power Electron. 2020, 35, 10821–10830. (In English) [Google Scholar] [CrossRef]
- Zhao, H.; Shen, Y.; Ying, W.; Qi, J.; Jiang, C.; Long, T. Mixed Analog Digital (MAD) Converters for High Power Density DC-DC Conversions. IEEE Trans. Power Electron. 2020, 35, 7742–7748. [Google Scholar] [CrossRef]
- Kącki, M.; Rylko, M.S.; Hayes, J.G.; Sullivan, C.R. Magnetic material selection for EMI filters. In Proceedings of the 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, USA, 1–5 October 2017; pp. 2350–2356. [Google Scholar] [CrossRef]
- Balutto, M.; Ripamonti, G.; Antoszczuk, P.D.; Michelis, S.; Iob, F.; Dago, A.; Saggini, S. Switched Tank Converter: Quasi-Resonant Regulation for Soft Start and Mismatch Mitigation Technique. IEEE Trans. Power Electron. 2023, 38, 15016–15031. [Google Scholar] [CrossRef]
- Li, Y.; Wei, M.; Lyu, X.; Ni, Z.; Cao, D. Analysis and Design of High-Efficiency Modular Multilevel Resonant DC-DC Converter. IEEE Open J. Power Electron. 2022, 3, 755–771. [Google Scholar] [CrossRef]
- Lyu, X.; Li, Y.; Ren, N.; Nan, C.; Cao, D.; Jiang, S. Optimization of High-Density and High-Efficiency Switched-Tank Converter for Data Center Applications. IEEE Trans. Ind. Electron. 2020, 67, 1626–1637. [Google Scholar] [CrossRef]
- Chen, M.; Perreault, D.J.; Afridi, K.K. Switched-Capacitor Split Drive Transformer Power Conversion Circuit. U.S. Patent No. 9,825,545, 21 November 2017. [Google Scholar]
- Liu, X.; Qiu, M.; Hobbs, K.; Dahneem, A.; Meng, H.; Cao, D. A 500 kW 1600 V Zero-Voltage Switching Resonant Switched-Capacitor DC-DC Converter for Electric Trucks and Electric Aircraft Application. In Proceedings of the 2023 IEEE Energy Conversion Congress and Exposition (ECCE), Nashville, TN, USA, 29 October–2 November 2023; pp. 2084–2090. [Google Scholar] [CrossRef]
- Li, Y.; Lyu, X.; Cao, D.; Jiang, S.; Nan, C. A 98.55% Efficiency Switched-Tank Converter for Data Center Application. IEEE Trans. Ind. Appl. 2018, 54, 6205–6222. [Google Scholar] [CrossRef]
- Fan, S.; Sun, L.; Duan, J.; An, Q.; Bi, K.T.; Zhang, K.; Wang, Y. An Improved Interleaved DC-DC Converter with Zero Voltage Switching Operation. In Proceedings of the 2018 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Bangkok, Thailand, 6–9 June 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Yuanmao, Y.; Cheng, K.W.E.; Yeung, Y.P.B. Zero-Current Switching Switched-Capacitor Zero-Voltage-Gap Automatic Equalization System for Series Battery String. IEEE Trans. Power Electron. 2012, 27, 3234–3242. [Google Scholar] [CrossRef]
- Tayebi, S.M.; Hu, H.; Abdel-Rahman, S.; Batarseh, I. Dual-Input Single-Resonant Tank LLC Converter with Phase Shift Control for PV Applications. IEEE Trans. Ind. Appl. 2019, 55, 1729–1739. [Google Scholar] [CrossRef]
- Tayebi, S.M.; Hu, H.; Abdel-Rahman, O.; Batarseh, I. Design and analysis of a dual-input single-resonant tank LLC converter for PV applications. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 476–483. [Google Scholar] [CrossRef]
- Katche, M.L.; Makokha, A.B.; Zachary, S.O.; Adaramola, M.S. A Comprehensive Review of Maximum Power Point Tracking (MPPT) Techniques Used in Solar PV Systems. Energies 2023, 16, 2206. [Google Scholar] [CrossRef]
- Mahesh, P.V.; Meyyappan, S.; Alla, R.R. Maximum power point tracking using decision-tree machine-learning algorithm for photovoltaic systems. Clean Energy 2022, 6, 762–775. [Google Scholar] [CrossRef]
- Elbarbary, Z.M.S.; Alranini, M.A. Review of maximum power point tracking algorithms of PV system. Front. Eng. Built Environ. 2021, 1, 68–80. [Google Scholar] [CrossRef]
- Fernandez, K.; Pilawa-Podgurski, R.C.N. A 1-to-10 Fixed-Ratio Step-up Multi-Resonant Cascaded Series-Parallel (CaSP) Switched-Capacitor Converter with Zero-Current Switching. In Proceedings of the 2023 11th International Conference on Power Electronics and ECCE Asia (ICPE 2023—ECCE Asia), Jeju Island, Republic of Korea, 22–25 May 2023; pp. 729–735. [Google Scholar] [CrossRef]
- Vicor Corporation; NBM Bus Converter. 2317S60E1560T0R. Vicor Corporation, Product Data Sheet, Rev 1.8, July 2021. Available online: https://www.vicorpower.com/documents/datasheets/ds-NBM2317S60E1560T0R-VICOR.pdf (accessed on 16 July 2021).
- Algamluoli, A.F.; Wu, X. A High-Efficiency DC-DC Converter Based on Series/Parallel Switched Inductor Capacitors for Ultra-High Voltage Gains. Appl. Sci. 2024, 14, 998. [Google Scholar] [CrossRef]
- Ni, Z.; Li, Y.; Liu, C.; Wei, M.; Cao, D. A 100-kW SiC Switched Tank Converter for Transportation Electrification. IEEE Trans. Power Electron. 2020, 35, 5770–5784. [Google Scholar] [CrossRef]
Method Name | Advantages | Considerations for Application |
---|---|---|
Precise Component Matching and Adjustment | Reduces frequency offsets due to component quality, improves stability | Higher costs, requires high-precision or adjustable components |
Control Strategy Optimization | Enhances efficiency, optimizes performance | Complex control systems, requires precise control and algorithm development |
Adaptive Control | Fast response, automatically adjusts, strong adaptability | Complex design, increased costs |
Soft Switching Techniques and Circuit Optimization | Increases efficiency, reduces losses | Design and implementation are challenging |
Monitoring Output Voltage to Match Resonance Frequency | Simple implementation, low cost, easy integration with existing systems | Requires basic stability in the measurement environment |
Feature | Self-Frequency Tracking | Other Studies |
---|---|---|
Switching Frequency Adjustment | Self-adjusting to maintain switching frequency approximately equal to the resonance frequency | Typical fixed switching frequency, does not adjust with changes in resonance frequency |
Avoiding Resonance Inaccuracy | Effectively prevents non-zero-voltage switching caused by resonance inaccuracies | Resonance inaccuracies may lead to non-zero-voltage switching |
Technical Implementation | Utilizes advanced frequency detection and automatic adjustment technology | Lacks effective frequency self-adaptation technology |
Application Scenario | Suitable for high precision control requirements in power electronic systems | More suitable for applications with minor parameter changes |
Literature Citation | Cites recent research demonstrating technological forefront | Often based on older theories, with fewer updates |
Module | Parameter |
---|---|
MOSFET | FET resistance Ron (Ohms): 0.01 |
Snubber resistance Ron (Ohms): 100 k | |
Internal diode resistance Rd (Ohms): 0.1 | |
DC Voltage source | Amplitude (V): 24 V |
Internal resistance (Ohms): 0.01 | |
PWM Generator | Timer period (s): 1/(fsw) |
Phase delay (s): 0 | |
Sample time: 1 × 10−7 | |
Resonant capacitance | Capacitance (µF): 1.5831 (24 V) |
Resonant inductance | Inductance (nH): 100 |
Decoupling capacitance | Capacitance (µF): 100 |
Capacitor initial voltage (V): 12 V | |
Resonant circuit-sampling resistance | Resistance (Ohms): 0.1 |
Output load | Resistance Rd (Ohms): 12 |
Symbol | Parameters | Circuit Realization |
---|---|---|
fsw | 30~100 kHz | DSP 28379D |
Q1, Q2, Q3, Q4 | 60 V, 240 A, 1.45 mΩ | BSC014N06NS |
Lr | 100 nH | SLC7250-101 |
Cr | 10 µF (Note) | GRM21BR61H106KE43L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Y.; Zheng, J.; Chen, D.; Ying, W.; Yue, F.; Jiang, C.; Long, T.; Liu, K.; Qiu, J.; Zhao, H. Self-Frequency Tracking for Fixed-Ratio Switch-Capacitors in Data Center Application without Extra Sensors. Electronics 2024, 13, 2029. https://doi.org/10.3390/electronics13112029
Du Y, Zheng J, Chen D, Ying W, Yue F, Jiang C, Long T, Liu K, Qiu J, Zhao H. Self-Frequency Tracking for Fixed-Ratio Switch-Capacitors in Data Center Application without Extra Sensors. Electronics. 2024; 13(11):2029. https://doi.org/10.3390/electronics13112029
Chicago/Turabian StyleDu, Yi, Jiaming Zheng, Dachuan Chen, Wucheng Ying, Fan Yue, Chaoqiang Jiang, Teng Long, Kefu Liu, Jian Qiu, and Hui Zhao. 2024. "Self-Frequency Tracking for Fixed-Ratio Switch-Capacitors in Data Center Application without Extra Sensors" Electronics 13, no. 11: 2029. https://doi.org/10.3390/electronics13112029
APA StyleDu, Y., Zheng, J., Chen, D., Ying, W., Yue, F., Jiang, C., Long, T., Liu, K., Qiu, J., & Zhao, H. (2024). Self-Frequency Tracking for Fixed-Ratio Switch-Capacitors in Data Center Application without Extra Sensors. Electronics, 13(11), 2029. https://doi.org/10.3390/electronics13112029