A Surrogate Model for the Rapid Evaluation of Electromagnetic-Thermal Effects under Humid Air Conditions
Abstract
:1. Introduction
2. Theory and Methodology
2.1. Finite Element Method for Electricity and Heat Transfer
2.2. Derivation of Equivalent Convective Heat Transfer Coefficient
2.3. Multiphysics Coupling Mechanism
3. Numerical Validation
3.1. Case1: A Dual-Conductor Model Fully Encased within SiN
3.2. Case2: A Five-Finned Heat Sink Heated by a Serpentine Rail
3.3. Case3: Power Transistor Pins Partially Embedded into the Substrate
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sravan, K.M.; Sachin, S.S. A holistic analysis of circuit performance variations in 3-D ICs with thermal and TSV-induced stress considerations. IEEE Trans. Very Large Scale Integr. VLSI Syst. 2015, 23, 1308–1321. [Google Scholar]
- Arvind, R.S.; Alessandro, V.; Martino, R.; Thomas, B.; David, A. 3D-ICE: Fast compact transient thermal modeling for 3D ICs with inter-tier liquid cooling. In Proceedings of the 2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 7–11 November 2010; pp. 463–470. [Google Scholar]
- Wang, Y.; Deng, E.; Wu, L.; Yan, Y.; Zhao, Y.; Huang, Y. Influence of humidity on the power cycling lifetime of SiC MOSFETs. IEEE Trans. Components Packag. Manuf. Technol. 2022, 12, 1781–1790. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, W.; Chen, A.; Zhang, Y.; Li, M. A co-simulation method based on coupled thermoelectric model for electrical and thermal behavior of the lithium-ion battery. IEEE Access 2019, 7, 180727–180737. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Si, L.; Gong, J. Numerical simulation of 3D electromagnetic–thermal phenomena in an induction heated slab. J. Iron Steel Res. Int. 2020, 27, 420–432. [Google Scholar] [CrossRef]
- Du, B.X.; Kong, X.X.; Cui, B.; Li, J. Improved ampacity of buried HVDC cable with high thermal conductivity LDPE/BN insulation. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 2667–2676. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, S.; Yang, M.; Zhang, Y. Calculation of electrothermal coupling power flow for XLPE insulated cable-based distribution systems. Int. J. Electr. Power 2020, 117, 105680.1–105680.8. [Google Scholar] [CrossRef]
- Miller, D. Device requirements for optical interconnects to silicon chips. Proc. IEEE 2009, 97, 1166–1185. [Google Scholar] [CrossRef]
- Zhang, Q.; Cen, S.; ScienceDirect. Multiphysics Modeling: Numerical Methods and Engineering Applications; Elsevier Ltd.: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Reato, F.M.; Ricci, C.; Misfatto, J.; Calzaferri, M.; Cinquemani, S. Multi-physics model of DC micro motors for dynamic operations. Sens. Actuators A Phys. 2023, 361, 114570. [Google Scholar] [CrossRef]
- Bayat, M.; Dong, W.; Thorborg, J.; To, A.C.; Hattel, J.H. A review of multi-scale and multi-physics simulations of metal additive manufacturing processes with focus on modeling strategies. Addit. Manuf. 2021, 47, 102278. [Google Scholar] [CrossRef]
- Kim, H.-K.; Lee, K.-J. Use of a multiphysics model to investigate the performance and degradation of lithium-ion battery packs with different electrical configurations. Energy 2023, 262, 125424. [Google Scholar] [CrossRef]
- dos Santos, F.L.M.; Anthonis, J.; Naclerio, F.; Gyselinck, J.J.C.; Van der Auweraer, H.; Goes, L.C.S. Multiphysics NVH modeling: Simulation of a switched reluctance motor for an electric vehicle. IEEE Trans. Ind. Electron. 2014, 61, 469–476. [Google Scholar] [CrossRef]
- Tang, H.; Yang, D.; Zhang, G.Q.; Liang, L.; Cai, M. The Multi-physics modeling of LED-based luminaires under temperature and humidity environment. In Proceedings of the 2012 13th International Conference on Electronic Packaging Technology & High Density Packaging, Guilin, China, 13–16 August 2012; pp. 803–807. [Google Scholar]
- Lall, P.; Luo, Y.; Nguyen, L. A novel numerical multiphysics framework for the modeling of Cu-Al wire bond corrosion under HAST conditions. In Proceedings of the 2018 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), San Diego, CA, USA, 29 May–1 June; pp. 1177–1185.
- Lu, T.; Jin, J. Electrical-thermal co-simulation for analysis of high-power RF/microwave components. IEEE Trans. Electromagn. Compat. 2017, 59, 93–102. [Google Scholar] [CrossRef]
- Enoksen, H.; Hvidsten, S.; Abil, B.; Mauseth, F. Time domain dielectric response of field grading sleeves subjected to high humidity and temperatures. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1220–1228. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, E.; Wu, T.; Zhang, Y.; Xie, L.; Huang, Y. Thermo-hygroscopic-mechanical coupling simulation method for power electronics under power cycling test. IEEE Trans. Power Electron. 2023, 38, 11521–11530. [Google Scholar] [CrossRef]
- Kopec, M.; Olbrycht, R.; Gamorski, P.; Kaluza, M. The influence of air humidity on convective cooling conditions of electronic devices. IEEE Trans. Ind. Electron. 2018, 65, 9717–9727. [Google Scholar] [CrossRef]
- Zheng, S.-F.; Wu, Z.-Y.; Gao, Y.-Y.; Yang, Y.-R.; Sundén, B.; Wang, X.-D. Transient multiphysics coupled model for multiscale droplet condensation out of moist air. Numer. Heat Transf. Part A Appl. 2022, 84, 16–34. [Google Scholar] [CrossRef]
- Laguerre, O.; Benamara, S.; Remy, D.; Flick, D. Experimental and numerical study of heat and moisture transfers by natural convection in a cavity filled with solid obstacles. Int. J. Heat Mass Transf. 2009, 10, 5691–5700. [Google Scholar] [CrossRef]
- Steeman, H.J.; Belleghem, M.V.; Janssens, A.; Paepe, M.D. Coupled simulation of heat and moisture transport in air and porous materials for the assessment of moisture related damage. Build. Environ. 2009, 44, 2176–2184. [Google Scholar] [CrossRef]
- Bayerer, R.; Lassmann, M.; Kremp, S. Transient hygrothermal-response of power modules in inverters—The basis for mission profiling under climate and power loading. IEEE Trans. Power Electron. 2015, 31, 613–620. [Google Scholar] [CrossRef]
- Yigit, K.S.; Ertunc, H.M. Prediction of the air temperature and humidity at the outlet of a cooling coil using neural networks. Int. Commun. Heat Mass Transf. 2006, 33, 898–907. [Google Scholar] [CrossRef]
- Xie, J.; Swaminathan, M. Fast electrical-thermal co-simulation using multigrid method for 3D integration. In Proceedings of the 2012 IEEE 62nd Electronic Components and Technology Conference, San Diego, CA, USA, 29 May–1 June 2012; pp. 651–657. [Google Scholar]
- Sun, Q.; Lin, Z.; Han, J.; Yang, W.; Fang, L.; Zhou, Z. Investigation on cable temperature in wet tunnel considering coupled heat and moisture transfer. IEEE Trans. Power Deliv. 2023, 38, 588–598. [Google Scholar] [CrossRef]
- Xie, J.; Swaminathan, M. Electrical-thermal co-simulation of 3D integrated systems with micro-fluidic cooling and Joule heating effects. IEEE Trans. Comp. Packag. Manufact. Technol. 2011, 1, 234–246. [Google Scholar] [CrossRef]
- Wang, P.; Chen, P.; Sha, W.E.I.; Zhang, H. Large-scale parallel DGTD and FETD method for transient microwave heating. In Proceedings of the 2020 IEEE MTT-S International Conference on Numerical Electromagnetic and Multiphysics Modeling and Optimization (NEMO), Hangzhou, China, 7–9 December 2020; pp. 1–3. [Google Scholar]
- Shi, J.; Yin, W.-Y.; Kang, K.; Mao, J.-F.; Li, L.-W. Frequency-thermal characterization of on-vhip transformers with patterned ground shields. IEEE Trans. Microw. Theory. Tech. 2007, 55, 1–12. [Google Scholar] [CrossRef]
- Al-Sharafi, A.; Sahin, A.Z.; Yilbas, B.S.; Shuja, S.Z. Marangoni convection flow and heat transfer characteristics of water—CNT nanofluid droplets. Numer. Heat Transf. Part A Appl. 2016, 69, 763–780. [Google Scholar] [CrossRef]
Coefficient | Value |
---|---|
2.9115 × 108 | |
−1.5643 × 106 | |
3.7000 × 103 | |
−3.9347 | |
−1.5644 × 10−3 |
Material | Cu | SiN |
---|---|---|
5.80 × 107 | 0 | |
C | 3.85 × 102 | 7.00 × 102 |
7.90 × 103 | 3.00 × 103 | |
3.83 × 102 | 2.00 × 102 |
FEM | COMSOL | Memory Saved | |
---|---|---|---|
Case 1 | 1.32 G | 2.11 G | 37.4% |
Case 2 | 1.33 G | 2.53 G | 47.4% |
Case 3 | 0.68 G | 2.39 G | 71.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Wang, H.; Zhang, H.; Wang, N.; Ren, Q.; Chen, Y.; Liu, F.; Gao, J. A Surrogate Model for the Rapid Evaluation of Electromagnetic-Thermal Effects under Humid Air Conditions. Electronics 2024, 13, 2336. https://doi.org/10.3390/electronics13122336
Zhu H, Wang H, Zhang H, Wang N, Ren Q, Chen Y, Liu F, Gao J. A Surrogate Model for the Rapid Evaluation of Electromagnetic-Thermal Effects under Humid Air Conditions. Electronics. 2024; 13(12):2336. https://doi.org/10.3390/electronics13122336
Chicago/Turabian StyleZhu, Hui, Hui Wang, Han Zhang, Nan Wang, Qiang Ren, Yanning Chen, Fang Liu, and Jie Gao. 2024. "A Surrogate Model for the Rapid Evaluation of Electromagnetic-Thermal Effects under Humid Air Conditions" Electronics 13, no. 12: 2336. https://doi.org/10.3390/electronics13122336
APA StyleZhu, H., Wang, H., Zhang, H., Wang, N., Ren, Q., Chen, Y., Liu, F., & Gao, J. (2024). A Surrogate Model for the Rapid Evaluation of Electromagnetic-Thermal Effects under Humid Air Conditions. Electronics, 13(12), 2336. https://doi.org/10.3390/electronics13122336