Temporal Knowledge Graph Reasoning Based on Entity Relationship Similarity Perception
Abstract
:1. Introduction
- We propose a novel ERSP, which is a representation learning model based on a TKG. This model integrates the entity-aware component, relationship similarity-aware component, and static attribute similarity-aware component, thus fully utilizing the similarity features between entity relationships and static attributes in historical facts. By modeling these features, our model has significant advantages in handling unseen entities and can solve the problem of hidden associations between static attributes of facts, thereby further enhancing the model’s predictive ability for entity relationships.
- To our knowledge, this is the first time that similarity features of historical facts and static attribute information have been integrated into TKG reasoning.
- We conducted extensive experiments on five commonly used TKG datasets and the results showed the excellent performance of ERSP in both entity prediction and relation-prediction tasks.
2. Related Work
3. Preliminaries
4. The Proposed Model: ERSP
4.1. Model Overview
4.2. Entity-Aware Component
4.2.1. Graph Convolutional GCN Network Structure
4.2.2. Adaptive Time Gate Network Structure
4.3. Relationship Similarity-Aware Component
4.4. Static Attribute Similarity-Aware Component
4.5. Decoder and Training
4.5.1. Scoring Function
4.5.2. Model Learning
Algorithm 1: Reasoning algorithm of RESP |
Input: Historical graph sequence , max_epoch |
Output: The loss of time reasoning task |
1: , , = Init() |
2: for = 1 to max_epoch |
3: for in do |
4: Generate structural entity embeddings ▷Equation (3) |
5: Generate the latest entity representation ▷Equation (4)//include Equations (5) and (6) |
6: Compute the probability vector of entity ▷Equation (22) |
7: Compute the loss of entity ▷Equation (24) |
8: end |
9: for in do |
10: Generate relation embeddings ▷Equation (7) |
11: Generate the relation representation ▷Equation (8)//include Equations (9)–(16) |
12: Compute relation similarity matrix ▷Equations (9) and (10) |
13: Update relation representation ▷Equation (11)//include Equations (12)–(16) |
14: Compute the probability vector of relation ▷Equation (23) |
15: Compute the loss of relation ▷Equation (25) |
16: end |
17: for in do |
18: Generate static attributes embeddings ▷Equation (17) |
19: Compute the similarity matrix ▷Equation (18) |
20: Select the high similarity values ▷Equation (19) |
20: Compute the loss of static attributes ▷Equation (21) |
21: end |
22: Compute the loss of time reasoning task |
23: return |
5. Experiments
5.1. Datasets
5.2. Evaluation Metrics
5.3. Baselines
5.3.1. Static TKG Reasoning Models
- DisMult: DisMult [33] learns entity and relation embedding information using bilinear functions.
- ComplEx: ComplEx [34] introduces complex domain space to deal with asymmetry in complex relations in KG.
- RotatE: RotatE [35] defines the rotation vector from the head entity to the tail entity as a relational representation.
- ConvE: ConvE [36] adopts convolutional operations in a CNN to handle header entity embedding and relation embedding.
- ConvTransE: ConvTransE [37] extends the convolutional neural network (CNN) idea to the TransE model.
- R-GCN: R-GCN [25] is based on a message-passing GCN framework, processing the structural data of multiple relations in a KG.
5.3.2. Interpolated TKG Reasoning Models
- HyTE: HyTE [38] embeds a learning time-aware knowledge graph based on a hyperplane and embeds the time information into the entity relation space.
- TTransE: TTransE [11] integrates temporal information into the embedding vector of entity and relation.
- TA-DistMult: TA-DistMult [13] adopts a recurrent neural network to learn the time-aware representation of relations.
- TNTComplEx: TNTComplEx [14] extends the ComplEx model based on fourth-order tensor canonical decomposition.
5.3.3. Extrapolated TKG Reasoning Models
- CyGNet: CyGNet [6] analyzes historical repetitive facts and predicts future facts through a time-aware replication generation mechanism.
- RE-NET: RE-NET [15] uses a cyclic event encoder to capture global and local features.
- TANGO-DistMult: TANGO-DistMult and TANGO-Tucker [7] apply the idea of neural ordinary differential equations to multi-relational graphs, and calculate the final results with the score functions of DistMult and Tucker, respectively.
- RE-GCN: RE-GCN [17] captures the structural-dependent features and the sequential patterns of facts in the KG utilizing relation-aware GCN and gate-recurrent components, respectively.
- xERTE: xERTE [16] utilizes the temporal relation attention mechanism to extract the causal features of temporal multi-relational data.
- GHT: GHT [18] captures temporal evolutionary information and transient structural information in KGs through Transformer.
- rGalT: rGalT [41] utilizes a self-encoder structure to capture the interaction between historical facts and predicted facts.
- ReGAT: ReGAT [19] encodes and models historical facts and concurrent facts based on the attention mechanism.
- PPT: PPT [42] converts the task of temporal knowledge graph completion into a pre-trained language model to capture its semantic information.
5.4. Implementation Details
5.5. Results
5.5.1. Results of Entity Prediction
5.5.2. Results of Relation Prediction
5.5.3. Comparison of Different Embedding Dimensions
5.5.4. Comparison of Different History Lengths
5.5.5. Ablation Study
5.6. Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yan, S.; Tian, C.; Zhang, Z.; Xu, G. LollipopE: Bi-centered lollipop embedding for complex logic query on knowledge graph. Neural Netw. 2024, 175, 106277. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Wang, P.; Xiao, M.; Ning, Z.; Wang, P.; Zhou, Y. Temporal inductive path neural network for temporal knowledge graph reasoning. Artif. Intell. 2024, 329, 104085. [Google Scholar] [CrossRef]
- Sun, X.; Cheng, H.; Li, J.; Liu, B.; Guan, J. All in one: Multi-task prompting for graph neural networks. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Long Beach, CA, USA, 6–10 August 2023. [Google Scholar]
- Sun, X.; Cheng, H.; Liu, B.; Li, J.; Chen, H.; Xu, G.; Yin, H. Self-supervised hypergraph representation learning for sociological analysis. IEEE Trans. Knowl. Data Eng. 2023, 35, 11860–11871. [Google Scholar] [CrossRef]
- Sun, X.; Cheng, H.; Dong, H.; Qiao, B.; Qin, S.; Lin, Q. Counter-Empirical Attacking based on Adversarial Reinforcement Learning for Time-Relevant Scoring System. IEEE Trans. Knowl. Data Eng. 2023, 1–12. [Google Scholar] [CrossRef]
- Zhu, C.; Chen, M.; Fan, C.; Cheng, G.; Zhang, Y. Learning from history: Modeling temporal knowledge graphs with sequential copy-generation networks. Proc. AAAI Conf. Artif. Intell. 2021, 35, 4732–4740. [Google Scholar] [CrossRef]
- Han, Z.; Ding, Z.; Ma, Y.; Gu, Y.; Tresp, V. Learning neural ordinary equations for forecasting future links on temporal knowledge graphs. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, Punta Cana, Dominican Republic, 7–11 November 2021; pp. 8352–8364. [Google Scholar]
- Sun, H.; Zhong, J.; Ma, Y.; Han, Z.; He, K. Timetraveler: Reinforcement learning for temporal knowledge graph forecasting. arXiv 2021, arXiv:2109.04101. [Google Scholar]
- Li, Z.; Guan, S.; Jin, X.; Peng, W.; Lyu, Y.; Zhu, Y.; Bai, L.; Li, W.; Guo, J.; Cheng, X. Complex evolutional pattern learning for temporal knowledge graph reasoning. arXiv 2022, arXiv:2203.07782. [Google Scholar]
- Mei, X.; Yang, L.; Jiang, Z.; Cai, X.; Gao, D.; Han, J.; Pan, S. An Inductive Reasoning Model based on Interpretable Logical Rules over temporal knowledge graph. Neural Netw. 2024, 174, 106219. [Google Scholar] [CrossRef] [PubMed]
- Leblay, J.; Chekol, M.W. Deriving validity time in knowledge graph. In Proceedings of the Companion Proceedings of the The Web Conference 2018, Lyon, France, 23–27 April 2018; pp. 1771–1776. [Google Scholar]
- Bordes, A.; Usunier, N.; Garcia-Duran, A.; Weston, J.; Yakhnenko, O. Translating embeddings for modeling multi-relational data. In Proceedings of the 26th International Conference on Neural Information Processing Systems, Red Hook, NY, USA, 5–10 December 2013. [Google Scholar]
- García-Durán, A.; Dumančić, S.; Niepert, M. Learning sequence encoders for temporal knowledge graph completion. arXiv 2018, arXiv:1809.03202. [Google Scholar]
- Lacroix, T.; Obozinski, G.; Usunier, N. Tensor decompositions for temporal knowledge base completion. arXiv 2020, arXiv:2004.04926. [Google Scholar]
- Jin, W.; Qu, M.; Jin, X.; Ren, X. Recurrent event network: Autoregressive structure reasoning over temporal knowledge graphs. arXiv 2019, arXiv:1904.05530. [Google Scholar]
- Han, Z.; Chen, P.; Ma, Y.; Tresp, V. Explainable subgraph reasoning for forecasting on temporal knowledge graphs. In Proceedings of the International Conference on Learning Representations, Addis Ababa, Ethiopia, 30 April 2020. [Google Scholar]
- Li, Z.; Jin, X.; Li, W.; Guan, S.; Guo, J.; Shen, H.; Wang, Y.; Cheng, X. Temporal knowledge graph reasoning based on evolutional representation learning. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, 11–15 July 2021; pp. 408–417. [Google Scholar]
- Sun, H.; Geng, S.; Zhong, J.; Hu, H.; He, K. Graph hawkes transformer for extrapolated reasoning on temporal knowledge graphs. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Abu Dhabi, United Arab Emirates, 7–11 December 2022. [Google Scholar]
- Li, Z.; Feng, S.; Shi, J.; Zhou, Y.; Liao, Y.; Yang, Y.; Li, Y.; Yu, N.; Shao, X. Future Event Prediction Based on Temporal Knowledge Graph Embedding. Comput. Syst. Sci. Eng. 2023, 44, 2411–2423. [Google Scholar] [CrossRef]
- Lacoste-Julien, S.; Palla, K.; Davies, A.; Kasneci, G.; Graepel, T.; Ghahramani, Z. Sigma: Simple greedy matching for aligning large knowledge bases. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Chicago, IL, USA, 11–13 August 2013. [Google Scholar]
- Song, D.; Luo, Y.; Heflin, J. Linking heterogeneous data in the semantic web using scalable and domain-independent candidate selection. IEEE Trans. Knowl. Data Eng. 2016, 29, 143–156. [Google Scholar] [CrossRef]
- Suchanek, F.M.; Abiteboul, S.; Senellart, P. Paris: Probabilistic alignment of relations, instances, and schema. arXiv 2011, arXiv:1111.7164. [Google Scholar] [CrossRef]
- Zeng, W.; Zhao, X.; Tang, J.; Lin, X.; Groth, P. Reinforcement learning–based collective entity alignment with adaptive features. ACM Trans. Inf. Syst. 2021, 39, 1–31. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, X.; Wu, J.; Li, T.; Wang, P.; Chen, L. Clusterea: Scalable entity alignment with stochastic training and normalized mini-batch similarities. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 14–18 August 2022. [Google Scholar]
- Sun, X.; Zhang, J.; Wu, X.; Cheng, H.; Xiong, Y.; Li, J. Graph prompt learning: A comprehensive survey and beyond. arXiv 2023, arXiv:2311.16534. [Google Scholar]
- Korkmaz, G.; Cadena, J.; Kuhlman, C.J.; Marathe, A.; Vullikanti, A.; Ramakrishnan, N. Combining heterogeneous data sources for civil unrest forecasting. In Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, Paris, France, 25–28 August 2015; pp. 258–265. [Google Scholar]
- Vashishth, S.; Sanyal, S.; Nitin, V.; Talukdar, P. Composition-based multi-relational graph convolutional networks. arXiv 2019, arXiv:1911.03082. [Google Scholar]
- Mahdisoltani, F.; Biega, J.; Suchanek, F.M. Yago3: A Knowledge Base from Multilingual Wikipedias; CIDR; HAL CCSD: Montpellier, France, 2013. [Google Scholar]
- Leetaru, K.; Schrodt, P.A. Gdelt: Global Data on Events, Location, and Tone, 1979–2012; ISA Annual Convention; Citeseer: Princeton, NJ, USA, 2013; Volume 2, pp. 1–49. [Google Scholar]
- Sun, X.; Yin, H.; Liu, B.; Chen, H.; Meng, Q.; Han, W.; Cao, J. Multi-level hyperedge distillation for social linking prediction on sparsely observed networks. In Proceedings of the Web Conference, Ljubljana, Slovenia, 19–23 April 2021. [Google Scholar]
- Bollen, J.; Mao, H.; Zeng, X. Twitter mood predicts the stock market. J. Comput. Sci. 2011, 2, 1–8. [Google Scholar] [CrossRef]
- Li, Y.; Sun, X.; Chen, H.; Zhang, S.; Yang, Y.; Xu, G. Attention Is Not the Only Choice: Counterfactual Reasoning for Path-Based Explainable Recommendation. arXiv 2024, arXiv:2401.05744. [Google Scholar] [CrossRef]
- Trouillon, T.; Welbl, J.; Riedel, S.; Gaussier, É.; Bouchard, G. Complex embeddings for simple link prediction. In Proceedings of the International Conference on Machine Learning, Phoenix, AZ, USA, 12–17 February 2016; pp. 2071–2080. [Google Scholar]
- Yang, B.; Yih, W.T.; He, X.; Gao, J.; Deng, L. Embedding entities and relations for learning and reasoning in knowledge bases. arXiv 2014, arXiv:1412.6575. [Google Scholar]
- Yang, B.; Yih, W.T.; He, X.; Gao, J.; Deng, L. Rotate: Knowledge graph embedding by relational rotation in complex space. arXiv 2019, arXiv:1902.10197. [Google Scholar]
- Dettmers, T.; Minervini, P.; Stenetorp, P.; Riedel, S. Convolutional 2d knowledge graph embeddings. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018; Volume 32. [Google Scholar]
- Shang, C.; Tang, Y.; Huang, J.; Bi, J.; He, X.; Zhou, B. End-to-end structure-aware convolutional networks for knowledge base completion. Proc. AAAI Conf. Artif. Intell. 2019, 33, 3060–3067. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, S.S.; Ray, S.N.; Talukdar, P. Hyte: Hyperplane-based temporally aware knowledge graph embedding. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; pp. 2001–2011. [Google Scholar]
- Goel, R.; Kazemi, S.M.; Brubaker, M.; Poupart, P. Diachronic embedding for temporal knowledge graph completion. Proc. AAAI Conf. Artif. Intell. 2020, 34, 3988–3995. [Google Scholar] [CrossRef]
- Kazemi, S.M.; Poole, D. Simple embedding for link prediction in knowledge graphs. Adv. Neural Inf. Process. Syst. 2018, 31. [Google Scholar] [CrossRef]
- Gao, Y.; Feng, L.; Kan, Z.; Han, Y.; Qiao, L.; Li, D. Modeling Precursors for Temporal Knowledge Graph Reasoning via Auto-encoder Structure. In Proceedings of the 31st International Joint Conference on Artificial Intelligence Main Track, Vienna, Austria, 23–29 July 2022. [Google Scholar]
- Xu, W.; Liu, B.; Peng, M.; Jia, X.; Peng, M. Pre-trained language model with prompts for temporal knowledge graph completion. arXiv 2023, arXiv:2305.07912. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Liu, K.; Zhao, F.; Xu, G.; Wang, X.; Jin, H. Temporal knowledge graph reasoning via time-distributed representation learning. In Proceedings of the 2022 IEEE International Conference on Data Mining (ICDM), Orlando, FL, USA, 28 November–1 December 2022. [Google Scholar]
- Sun, X.; Yin, H.; Liu, B.; Meng, Q.; Cao, J.; Zhou, A.; Chen, H. Structure learning via meta-hyperedge for dynamic rumor detection. IEEE Trans. Knowl. Data Eng. 2022, 35, 9128–9139. [Google Scholar] [CrossRef]
Symbol | Description |
---|---|
A temporal knowledge graph. | |
The entity set in the TKG. | |
The relation set in the TKG. | |
The fact set. | |
Subject entity, object entity. | |
The weight matrix related to the relation . | |
The weight matrix related to the object entity . | |
The static embedding matrix. | |
The evolutionary embedding matrix. | |
The similarity matrix. | |
The activation function. | |
The total number of entities. | |
The total number of relations. | |
The score probability of the entity. | |
The scoring probability of the relation. |
Model | ICE14 | ICE105-15 | ICE18 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
MRR | H@1 | H@3 | H@10 | MRR | H@1 | H@3 | H@10 | MRR | H@1 | H@3 | H@10 | |
DisMult 1 | 20.32 | 6.13 | 27.59 | 46.61 | 19.91 | 5.63 | 27.22 | 47.33 | 13.86 | 5.61 | 15.22 | 31.26 |
ComplEx 1 | 22.61 | 9.88 | 28.93 | 47.57 | 20.26 | 6.66 | 26.43 | 47.31 | 15.45 | 8.04 | 17.19 | 30.73 |
R-GCN 1 | 28.03 | 19.42 | 31.95 | 44.83 | 27.13 | 18.83 | 30.41 | 43.16 | 15.05 | 8.13 | 16.49 | 29.00 |
ConvE 1 | 30.30 | 21.30 | 34.42 | 47.89 | 31.40 | 21.56 | 35.70 | 50.96 | 22.81 | 13.63 | 25.83 | 41.43 |
Conv- TransE 1 | 31.50 | 22.46 | 34.98 | 50.03 | 30.28 | 20.79 | 33.80 | 49.95 | 23.22 | 14.26 | 26.13 | 41.34 |
RotatE 1 | 25.71 | 16.41 | 29.01 | 45.16 | 19.01 | 10.42 | 21.35 | 36.92 | 14.53 | 6.47 | 15.78 | 31.86 |
HyTE 1 | 16.78 | 2.13 | 24.84 | 43.94 | 16.05 | 6.53 | 20.20 | 34.72 | 7.41 | 3.10 | 7.33 | 16.01 |
TTransE 1 | 12.86 | 3.14 | 15.72 | 33.65 | 16.53 | 5.51 | 20.77 | 39.26 | 8.44 | 1.85 | 8.95 | 22.38 |
TA-DistMult 1 | 26.22 | 16.83 | 29.72 | 45.23 | 27.51 | 17.57 | 31.46 | 47.32 | 16.42 | 8.60 | 18.13 | 32.51 |
DE-SimplE 2 | 32.67 | 24.43 | 35.69 | 49.11 | 35.02 | 25.91 | 38.99 | 52.75 | 19.30 | 11.53 | 21.86 | 34.80 |
TNT- ComplEx 2 | 32.12 | 23.35 | 36.03 | 49.13 | 27.54 | 9.52 | 30.80 | 42.86 | 21.23 | 13.28 | 24.02 | 36.91 |
CyGNet 1 | 34.68 | 25.35 | 38.88 | 53.16 | 35.46 | 25.44 | 40.20 | 54.47 | 24.98 | 15.54 | 28.58 | 43.54 |
RE-NET 1 | 35.77 | 25.99 | 40.10 | 54.87 | 36.86 | 26.24 | 41.85 | 57.60 | 26.17 | 16.43 | 29.89 | 44.37 |
TANGO-DistMult | 22.87 | 14.22 | 25.43 | 40.32 | 40.23 | 30.53 | 44.95 | 59.05 | 26.21 | 16.92 | 29.77 | 44.41 |
TANGO-Tucker | 24.36 | 15.12 | 27.15 | 43.07 | 41.82 | 31.10 | 47.55 | 62.19 | 24.36 | 15.12 | 27.15 | 43.07 |
RE-GCN 1 | 41.25 | 30.46 | 46.26 | 62.05 | 45.61 | 34.43 | 51.85 | 66.64 | 30.55 | 20.00 | 34.73 | 51.46 |
xERTE 1 | 32.23 | 24.29 | 24.29 | 24.29 | 38.07 | 28.45 | 43.92 | 57.62 | 27.98 | 19.26 | 32.43 | 46.00 |
GHT | 37.40 | 27.77 | 41.66 | 56.19 | 41.50 | 30.79 | 46.85 | 62.73 | 27.40 | 18.08 | 30.76 | 45.76 |
rGalT | 38.33 | 28.57 | 42.86 | 58.13 | 38.89 | 27.58 | 44.19 | 59.10 | 27.88 | 18.01 | 31.59 | 47.02 |
PPT | 38.42 | 28.94 | 42.50 | 57.01 | 38.85 | 28.57 | 43.35 | 58.63 | 26.63 | 16.94 | 30.64 | 45.43 |
ERSP | 42.65 | 31.88 | 47.99 | 63.64 | 47.10 | 35.68 | 53.42 | 68.70 | 31.17 | 20.45 | 35.39 | 52.39 |
Model | GDELT | YAGO | |||||
---|---|---|---|---|---|---|---|
MRR | H@1 | H@3 | H@10 | MRR | H@3 | H@10 | |
DisMult 1 | 8.61 | 3.91 | 8.27 | 17.04 | 44.05 | 49.70 | 59.94 |
ComplEx 1 | 9.84 | 5.17 | 9.58 | 18.23 | 44.09 | 49.57 | 59.64 |
R-GCN 1 | 12.17 | 7.40 | 12.37 | 20.63 | 20.25 | 24.01 | 37.30 |
ConvE 1 | 18.37 | 11.29 | 19.36 | 32.13 | 41.22 | 47.03 | 59.90 |
Conv-TransE 1 | 19.07 | 11.85 | 20.32 | 33.14 | 46.67 | 52.22 | 62.52 |
RotatE 1 | 3.62 | 0.52 | 2.26 | 8.37 | 42.08 | 46.77 | 59.39 |
HyTE 1 | 6.69 | 0.01 | 7.57 | 19.06 | 14.42 | 39.73 | 46.98 |
TTransE 1 | 5.53 | 0.46 | 4.97 | 15.37 | 26.10 | 36.28 | 47.73 |
TA-DistMult 1 | 10.34 | 4.44 | 10.44 | 21.63 | 44.98 | 50.64 | 61.11 |
RGCRN 2 | 18.63 | 11.53 | 19.80 | 32.42 | 43.71 | 48.53 | 56.98 |
CyGNet 1 | 18.05 | 11.13 | 19.11 | 31.50 | 46.72 | 52.48 | 61.52 |
RE-NET 1 | 19.60 | 12.03 | 20.56 | 33.89 | 46.81 | 52.71 | 61.93 |
TANGO-DistMult | - | - | - | - | 49.49 | 55.42 | 63.74 |
TANGO-Tucker | - | - | - | - | 49.31 | 55.12 | 63.73 |
RE-GCN 1 | 19.31 | 11.99 | 20.61 | 33.59 | 62.50 | 70.24 | 81.55 |
rGalT | 19.56 | 12.11 | 20.89 | 34.15 | 51.45 | 57.76 | 68.31 |
RE-GAT | 19.11 | 11.80 | 20.44 | 33.34 | - | - | - |
ERSP | 19.83 | 12.25 | 21.27 | 34.63 | 63.89 | 72.78 | 84.18 |
Model | ICE18 | ICE14 | ICE05-15 | YAGO | GDELT |
---|---|---|---|---|---|
ConvE 1 | 37.73 | 38.80 | 37.89 | 91.33 | 18.84 |
ConvTransE 1 | 38.00 | 38.40 | 38.26 | 90.98 | 18.97 |
RGCRN 1 | 37.14 | 38.04 | 38.37 | 90.18 | 18.58 |
RE-GCN 1 | 40.53 | 41.06 | 40.63 | 93.85 | 19.22 |
ERSP | 41.17 | 41.14 | 41.20 | 94.08 | 19.61 |
Model | ICE18 | ICE14 | ICE05-15 | YAGO | GDELT |
---|---|---|---|---|---|
RGU | 31.13 | 41.62 | 46.83 | 63.89 | 19.87 |
SGSC | 31.28 | 42.13 | 47.00 | 63.83 | 19.86 |
RGU + SGSC | 31.12 | 41.99 | 47.00 | 63.78 | 19.86 |
RGU + ATGN | 30.98 | 42.01 | 46.51 | 63.79 | 19.91 |
SGSC + ATGN | 31.20 | 42.30 | 46.91 | 63.78 | 19.89 |
ERSP | 31.19 | 42.65 | 47.10 | 63.89 | 19.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, S.; Zhou, C.; Liu, Q.; Ji, X.; Huang, M. Temporal Knowledge Graph Reasoning Based on Entity Relationship Similarity Perception. Electronics 2024, 13, 2417. https://doi.org/10.3390/electronics13122417
Feng S, Zhou C, Liu Q, Ji X, Huang M. Temporal Knowledge Graph Reasoning Based on Entity Relationship Similarity Perception. Electronics. 2024; 13(12):2417. https://doi.org/10.3390/electronics13122417
Chicago/Turabian StyleFeng, Siling, Cong Zhou, Qian Liu, Xunyang Ji, and Mengxing Huang. 2024. "Temporal Knowledge Graph Reasoning Based on Entity Relationship Similarity Perception" Electronics 13, no. 12: 2417. https://doi.org/10.3390/electronics13122417
APA StyleFeng, S., Zhou, C., Liu, Q., Ji, X., & Huang, M. (2024). Temporal Knowledge Graph Reasoning Based on Entity Relationship Similarity Perception. Electronics, 13(12), 2417. https://doi.org/10.3390/electronics13122417