Design of a Real-Time Monitoring System for Electroencephalogram and Electromyography Signals in Cerebral Palsy Rehabilitation via Wearable Devices
Abstract
:1. Introduction
2. Overall System Design Scheme
3. Hardware Design of the System
3.1. Introduction to Hardware Sensor Modules
3.2. Hardware System Platform Design
4. Remote Communication Server Construction
4.1. MQTT Server Communication
4.2. MQTT Server Construction
5. Work Flow of the System
6. Signal Acquisition and Its Principles
6.1. Blood Oxygen and Heart Rate Signal Acquisition Principle and Filtering
6.1.1. Acquisition Principle
6.1.2. LMS Adaptive Filtering
6.2. Principle of Myobrain Signal Acquisition
7. Verifying the Experimental Design of the Equipment
7.1. Systematic Experimental Design
7.2. Analysis of Test Results
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pham, R.; Mol, B.W.; Gecz, J.; MacLennan, A.H.; MacLennan, S.C.; Corbett, M.A.; van Eyk, C.L.; Webber, D.L.; Palmer, L.J.; Berry, J.G. Definition and diagnosis of cerebral palsy in genetic studies: A systematic review. Dev. Med. Child Neurol. 2020, 62, 1024–1030. [Google Scholar] [CrossRef]
- Faccioli, S.; Pagliano, E.; Ferrari, A.; Maghini, C.; Siani, M.F.; Sgherri, G.; Cappetta, G.; Borelli, G.; Farella, G.M.; Foscan, M.; et al. Evidence-based management and motor rehabilitation of cerebral palsy children and adolescents: A systematic review. Front. Neurol. 2023, 14, 1171224. [Google Scholar] [CrossRef] [PubMed]
- Keogh, J.M.; Badawi, N. The origins of cerebral palsy. Curr. Opin. Neurol. 2006, 19, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Anonymous. Does the Level of Focus in Serious Games in Immersive VR Correlate with the Quality of Movement? Preliminary Results from an Ongoing Study on Rehabilitation of Children with Cerebral Palsy. IEEE Int. Conf. Rehabil Robot. 2023, 2023, 1–6. [Google Scholar]
- Graham, H.K.; Rosenbaum, P.; Paneth, N.; Dan, B.; Lin, J.-P.; Damiano, D.L.; Becher, J.G.; Gaebler-Spira, D.; Colver, A.; Reddihough, D.S. Cerebral palsy. Nat. Rev. Dis. Primers 2016, 2, 15082. [Google Scholar] [PubMed]
- Xuan, L.; Nuno, O.; Naphtaly, E.; JenFu, C.; Katherine, B.; Sheila, B.; Hannah, S.; Peter, B. Feasibility of a real-time pattern-based kinematic feedback system for gait retraining in pediatric cerebral palsy. J. Rehabil. Assist. Technol. Eng. 2021, 8, 20556683211014125. [Google Scholar]
- Narayan, A.; Joshua, A.M.; Fernandes, R.; Karnad, S.D.; Alammari, A.; Chauhan, N.S.; Almgamese, M.T.D. Immediate effects of a novel hand rehabilitation board on fine motor skills in children with cerebral palsy: A pilot study. NeuroRehabilitation 2024, 54, 237–244. [Google Scholar] [PubMed]
- Stefano, P.; Andrea, M.; Giorgio, S.; Nicola, S.; Claudio, S.; Irene, A.; Michela, A.; Roberto, B.; Eliana, B.; Giulia, B.; et al. Assessing and treating pain associated with stroke, multiple sclerosis, cerebral palsy, spinal cord injury and spasticity. Evidence and recommendations from the Italian Consensus Conference on Pain in Neurorehabilitation. Eur. J. Phys. Rehabil. Med. 2016, 52, 827–840. [Google Scholar]
- Mirjam, B.; Angela, M.; Francesca, L.F.B.; Rosaria, D.L.; Danilo, L.; Angelo, Q.; Irene, C.; Giovanni, M.; Salvatore, C.R. Rehabilitation of Gait and Balance in Cerebral Palsy: A Scoping Review on the Use of Robotics with Biomechanical Implications. J. Clin. Med. 2023, 12, 3278. [Google Scholar] [CrossRef]
- Ayyad, M.A.; Owida, H.A.; Fazio, R.D.; Naami, B.A.; Visconti, P. Electromyography Monitoring Systems in Rehabilitation: A Review of Clinical Applications, Wearable Devices and Signal Acquisition Methodologies. Electronics 2023, 12, 1520. [Google Scholar] [CrossRef]
- Disselhorst-Klug, C.; Schmitz-Rode, T.; Rau, G. Surface electromyography and muscle force: Limits in sEMG–force relationship and new approaches for applications. Clin. Biomech. 2009, 24, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Shumi, Z.; Jianxun, L.; Zidan, G.; Yisong, L.; Xia, O.; Chiu, C.C.; Shuangchen, R. Wearable Physiological Monitoring System Based on Electrocardiography and Electromyography for Upper Limb Rehabilitation Training. Sensors 2020, 20, 4861. [Google Scholar] [CrossRef] [PubMed]
- Toledo-Peral, C.L.; Gutiérrez-Martínez, J.; Mercado-Gutiérrez, J.A.; Martín-Vignon-Whaley, A.I.; Vera-Hernández, A.; Leija-Salas, L. sEMG Signal Acquisition Strategy towards Hand FES Control. J. Healthc. Eng. 2018, 2018, 2350834. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, G.; Seiler, A.; Chételat, O.; Schindler, K.A. Ultra-Long-Term-EEG Monitoring (ULTEEM) Systems: Towards User-Friendly Out-of-Hospital Recordings of Electrical Brain Signals in Epilepsy. Sensors 2024, 24, 1867. [Google Scholar] [CrossRef] [PubMed]
- Teplan, M. Fundamentals of EEG measurement. Meas. Sci. Rev. 2002, 2, 1–11. [Google Scholar]
- Zhang, Q.; Wang, P.; Liu, Y.; Peng, B.; Zhou, Y.; Zhou, Z.; Tong, B.; Qiu, B.; Zheng, Y.; Dai, Y. A real-time wireless wearable electroencephalography system based on Support Vector Machine for encephalopathy daily monitoring. Int. J. Distrib. Sens. Netw. 2018, 14, 155014771877956. [Google Scholar]
- Hao, J.; Huang, B.; Remis, A.; He, Z. The application of virtual reality to home-based rehabilitation for children and adolescents with cerebral palsy: A systematic review and meta-analysis. Physiother. Theory Pract. 2024, 40, 1588–1608. [Google Scholar] [PubMed]
- LYU Pin value of combining surface electromyography with video EEG and ECG in the diagnosis of motor seizures in children with epilepsy. Chin. Pediatr. Integr. Tradit. West. Med. 2022, 14, 316–318.
- Wang, H.; Sun, Y.; Zheng, Y. The clinical value of video EEG combined with synchronized electromyography in the diagnosis of pediatric epilepsy. Matern. Child Health Care China 2018, 33, 4033–4035. [Google Scholar]
- Heremans, E.; Devulder, A.; Buyse, B.; Testelmans, D.; Paesschen, W.V.; Vos, M.D. Automatic sleep staging and detection of sleep disorders through wearable EEG monitoring devices. Sleep Med. 2024, 115. [Google Scholar] [CrossRef]
- Sneineh, A.A.; Shabaneh, A.A. Design of a smart hydroponics monitoring system using an ESP32 microcontroller and the Internet of Things. MethodsX 2023, 11, 102401. [Google Scholar] [PubMed]
- Jahnavi, T.S.; Thumma, N.; Reddy, K.A.; Teja, U.V.; Gunasree, M.; Kiran, M. Health monitoring smart glove using esp32 microcontroller. J. Phys. Conf. Ser. 2022, 2325, 012007. [Google Scholar]
- Li, P.; Deng, X. An intelligent plant growth monitoring system based on ESP32 and IoT resource explorer platform. J. Electron. Inf. Sci. 2023, 8, 21–32. [Google Scholar]
- Ferraz, R.D.S.; Fonseca, R.S.D.; Rodrigues, I.T.; Silva, C.B.D. Surface Electromyographic Signal Acquisition System for Real Time Monitoring of Upper Limbs Muscles. J. Comput. Theor. Nanosci. 2021, 18, 1147–1152. [Google Scholar]
- Vogrin, S.J.; Plummer, C. EEG Source Imaging-Clinical Considerations for EEG Acquisition and Signal Processing for Improved Temporo-Spatial Resolution. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 2024, 41, 8–18. [Google Scholar]
- Abe, C.U.; Mateus, M.; Bruno, B.; Vieira, T.D. MAX30102 Photometric Biosensor Coupled to ESP32-Webserver Capabilities for Continuous Point of Care Oxygen Saturation and Heartrate Monitoring. Eng. Proc. 2021, 16, 9. [Google Scholar] [CrossRef]
- Asimkiran, D.; Bhaskar, M. Design of Intrusion Detection System Using GA and CNN for MQTT-Based IoT Networks. Wirel. Pers. Commun. 2024, 134, 2059–2082. [Google Scholar]
- Hanif, A.A.; Ilyas, M. Effective Feature Engineering Framework for Securing MQTT Protocol in IoT Environments. Sensors 2024, 24, 1782. [Google Scholar] [CrossRef] [PubMed]
- Akshatha, P.S.; Kumar, S.D. MQTT and blockchain sharding: An approach to user-controlled data access with improved security and efficiency. Blockchain Res. Appl. 2023, 4, 100158. [Google Scholar]
- Shao, Z.T.; Huang, M.X.; Wu, D.; Zhang, X.; Huang, A. Design of a Simplified Wireless Sensor Network Node Based on MQTT Protocol. arXiv 2019, arXiv:1906.10540. [Google Scholar]
- Yeh, Y.C.; Haasdonk, B.; Schmid-Staiger, U.; Stier, M.; Tovar, G.E. A novel model extended from the Bouguer-Lambert-Beer law can describe the non-linear absorbance of potassium dichromate solutions and microalgae suspensions. Front. Bioeng. Biotechnol. 2023, 11, 1116735. [Google Scholar] [CrossRef] [PubMed]
- Chu, Y.; Tang, K.; Hsu, Y.-C.; Huang, T.; Wang, D.; Li, W.; Savitz, S.I.; Jiang, X. Non-invasive arterial blood pressure measurement and SpO2 estimation using PPG signal: A deep learning framework. BMC Med. Inform. Decis. Mak. 2023, 23, 131. [Google Scholar]
- Biagetti, G.; Crippa, P.; Falaschetti, L.; Orcioni, S.; Turchetti, C. Reduced complexity algorithm for heart rate monitoring from PPG signals using automatic activity intensity classifier. Biomed. Signal Process. Control 2019, 52, 293–301. [Google Scholar] [CrossRef]
- PavanKalyan, I.; Santosh, G.J.; Prasad KH, K.; Nandan, D. Study of Echo Cancellation approach by using Least Mean Square (LMS) Algorithm. J. Phys. Conf. Ser. 2021, 1714, 012053. [Google Scholar]
- Tagore, S.; Reche, A.; Paul, P.; Deshpande, M. Electromyography: Processing, Muscles’ Electric Signal Analysis, and Use in Myofunctional Orthodontics. Cureus 2023, 15, e50773. [Google Scholar] [PubMed]
- Hyelim, K.; Soohyeon, R.; Sora, H.; Daeyoung, L.; Wonyoung, J. Fabrication of Textile-Based Dry Electrode and Analysis of Its Surface EMG Signal for Applying Smart Wear. Polymers 2022, 14, 3641. [Google Scholar] [CrossRef] [PubMed]
- Dustin, C.O.; Paola, M.A.; Rigoberto, F.D.; Israel, P.; Héctor, M.V. Evaluation of features and channels of electroencephalographic signals for biometric systems. EURASIP J. Adv. Signal Process. 2024, 2024, 58. [Google Scholar]
- Devi, S.; Guha, K.; Baishnab, K.L.; Iannacci, J.; Krishnaswamy, N. Survey on various architectures of preamplifiers for electroencephalogram (EEG) signal acquisition. Microsyst. Technol. 2022, 28, 995–1009. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, A.; Wu, T.; Jia, J. Design of a Real-Time Monitoring System for Electroencephalogram and Electromyography Signals in Cerebral Palsy Rehabilitation via Wearable Devices. Electronics 2024, 13, 2902. https://doi.org/10.3390/electronics13152902
Xiong A, Wu T, Jia J. Design of a Real-Time Monitoring System for Electroencephalogram and Electromyography Signals in Cerebral Palsy Rehabilitation via Wearable Devices. Electronics. 2024; 13(15):2902. https://doi.org/10.3390/electronics13152902
Chicago/Turabian StyleXiong, Anshi, Tao Wu, and Jingtao Jia. 2024. "Design of a Real-Time Monitoring System for Electroencephalogram and Electromyography Signals in Cerebral Palsy Rehabilitation via Wearable Devices" Electronics 13, no. 15: 2902. https://doi.org/10.3390/electronics13152902
APA StyleXiong, A., Wu, T., & Jia, J. (2024). Design of a Real-Time Monitoring System for Electroencephalogram and Electromyography Signals in Cerebral Palsy Rehabilitation via Wearable Devices. Electronics, 13(15), 2902. https://doi.org/10.3390/electronics13152902