A Fast Inverse Synthetic Aperture Radar Imaging Scheme Combining GPU-Accelerated Shooting and Bouncing Ray and Back Projection Algorithm under Wide Bandwidths and Angles
Abstract
:1. Introduction
2. A GPU-Accelerated SBR Using BVH Tree Structure
2.1. Calculation of Multiple Scattering Using PO and GO
2.2. GPU-Accelerated Ray Tracing Using BVH Tree Structure
2.2.1. GPU Acceleration Process
2.2.2. Ray Tracing Algorithm Using BVH Tree
3. GPU-Accelerated BP Imaging Algorithm
3.1. BP Algorithm for ISAR Imaging
3.2. GPU Acceleration of BP Algorithm for ISAR Imaging
4. Results and Discussion
4.1. Validation of GPU-Accelerated SBR Method
4.2. ISAR Imaging Simulations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BP | Back Projection |
BVH | Bounding Volume Hierarchies |
C++AMP | C++ Accelerated Massive Parallelism |
CUDA | Compute Unified Device Architecture |
CAD | Computer-Aided Design |
CPU | Central Processing Unit |
EDM | Equivalent Dipole Moment |
FFT | Fast Fourier Transform |
GPU | Graphics Processing Unit |
GO | Geometrical Optics |
ISAR | Inverse Synthetic Aperture Radar |
IFFT | Inverse Fast Fourier Transform |
Kd-tree | K-dimensional tree |
MOM | Method of Moments |
PTD | Physical Theory of Diffraction |
PO | Physical Optics |
PEC | Perfect Electrical Conductor |
RCS | Radar Cross Section |
RL-GO | Ray Launching Geometrical Optics |
RMSE | Root Mean Squared Error |
SBR | Shooting and Bouncing Ray |
SAH | Surface Area Heuristic |
SMs | Streaming Multiprocessors |
SPs | Streaming Processors |
SIMT | Single Instruction, Multiple Threads |
TDSBR | Time-Domain Shooting and Bouncing Ray |
TDPO | Time-Domain Physical Optics |
References
- Bhalla, R.; Ling, H. ISAR image formation using bistatic data computed from the shooting and bouncing ray technique. J. Electromagn. Waves Appl. 1993, 7, 1271–1287. [Google Scholar] [CrossRef]
- He, X.Y.; Zhou, X.Y.; Cui, T.J. Fast 3D-ISAR image simulation of targets at arbitrary aspect angles through nonuniform fast Fourier transform (NUFFT). IEEE Trans. Antennas Propag. 2012, 60, 2597–2602. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, C.F.; Jin, J.M. Broadband Monostatic RCS and ISAR Computation of Large and Deep Open Cavities. IEEE Trans. Antennas Propag. 2018, 66, 4180–4193. [Google Scholar] [CrossRef]
- Prickett, M.; Chen, C. Principles of inverse synthetic aperture radar/ISAR/imaging. In Proceedings of the EASCON 1980, Electronics and Aerospace Systems Conference, Arlington, VA, USA, 29 September–1 October 1980; pp. 340–345. [Google Scholar]
- García-Fernández, A.F.; Yeste-Ojeda, O.A.; Grajal, J. Facet Model of Moving Targets for ISAR Imaging and Radar Back-Scattering Simulation. IEEE Trans. Aerosp. Electron. Syst. 2010, 46, 1455–1467. [Google Scholar] [CrossRef]
- Lee, J.I.; Yun, D.J.; Kim, H.J.; Yang, W.Y.; Myung, N.H. Fast ISAR Image Formations Over Multiaspect Angles Using the Shooting and Bouncing Rays. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1020–1023. [Google Scholar] [CrossRef]
- Guo, G.; Guo, L.; Wang, R.; Li, L. An ISAR Imaging Framework for Large and Complex Targets Using TDSBR. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 1928–1932. [Google Scholar] [CrossRef]
- Meng, W.; Li, J.; Xi, Y.J.; Guo, L.X.; Li, Z.H.; Wen, S.K. An Improved Shooting and Bouncing Ray Method Based on Blend-Tree for EM Scattering of Multiple Moving Targets and Echo Analysis. IEEE Trans. Antennas Propag. 2024, 72, 2723–2737. [Google Scholar] [CrossRef]
- Yang, P.J.; Wu, R.; Ren, X.C.; Zhang, Y.Q.; Zhao, Y. Doppler spectra of electromagnetic wave scattered from an object flying above time-varying nonlinear sea surfaces. J. Electromagn. Waves Appl. 2019, 33, 2175–2198. [Google Scholar] [CrossRef]
- Ling, H.; Chou, R.C.; Lee, S.W. Shooting and bouncing rays: Calculating the RCS of an arbitrarily shaped cavity. IEEE Trans. Antennas Propag. 1989, 37, 194–205. [Google Scholar] [CrossRef]
- Xu, F.; Jin, Y.Q. Bidirectional analytic ray tracing for fast computation of composite scattering from electric-large target over a randomly rough surface. IEEE Trans. Antennas Propag. 2009, 57, 1495–1505. [Google Scholar] [CrossRef]
- Tao, Y.; Lin, H.; Bao, H. GPU-Based Shooting and Bouncing Ray Method for Fast RCS Prediction. IEEE Trans. Antennas Propag. 2010, 58, 494–502. [Google Scholar] [CrossRef]
- Meng, W.; Li, J.; Guo, L.X.; Yang, Q.J. An Accelerated SBR Method for RCS Prediction of Electrically Large Target. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 1930–1934. [Google Scholar] [CrossRef]
- Baden, J.M.; Tripp, V.K. Ray reversal in SBR RCS calculations. In Proceedings of the 2015 31st International Review of Progress in Applied Computational Electromagnetics (ACES), Williamsburg, VA, USA, 22–26 March 2015; pp. 1–2. [Google Scholar]
- Feng, T.T.; Guo, L.X. An Improved Ray-Tracing Algorithm for SBR-Based EM Scattering Computation of Electrically Large Targets. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 818–822. [Google Scholar] [CrossRef]
- Yun, K.C.; Fu, W.C. Efficient GPU Implementation of the High-Frequency SBR-PO Method. IEEE Antennas Wirel. Propag. Lett. 2013, 12, 941–944. [Google Scholar] [CrossRef]
- Wu, R.; Wu, B.Y.; He, P.X.; Guo, K.Y.; Sheng, X.Q. A Fast Plane Wave Expansion Algorithm for Rigorous Scattering Analysis from Swarm Targets. IEEE Trans. Antennas Propag. 2023, 71, 7426–7437. [Google Scholar] [CrossRef]
- Dong, C.-L.; Guo, L.-X.; Meng, X. An accelerated algorithm based on GO-PO/PTD and CWMFSM for EM scattering from the ship over a sea surface and SAR image formation. IEEE Trans. Antennas Propag. 2020, 68, 3934–3944. [Google Scholar] [CrossRef]
- Dong, C.-L.; Guo, L.-X.; Meng, X.; Wang, Y. An accelerated SBR for EM scattering from the electrically large complex objects. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 2294–2298. [Google Scholar] [CrossRef]
- Meng, W.; Li, J.; Chai, S.R.; Xi, Y.J.; Wen, S.K.; Liu, R.F. An Improved SBR-PTD Method for EM Scattering from Moving Target. In Proceedings of the 2023 International Applied Computational Electromagnetics Society Symposium (ACES-China), Hangzhou, China, 15–18 August 2023; pp. 1–3. [Google Scholar]
- Li, H.Z.; Dong, C.L.; Meng, X.; Guo, L.X.; Wei, Q.H. A Novel Equivalent Dipole Moment-Based MoM-SBR Hybrid Method for EM Scattering Computation of Electrically Large Complex Targets. In Proceedings of the 2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Qingdao, China, 14–17 May 2023; pp. 1–3. [Google Scholar]
- Wang, Z.; Wei, F.; Huang, Y.; Zhang, X.; Zhang, Z. Improved RD imaging method based on the principle of step-by-step calculation. In Proceedings of the 2021 2nd China International SAR Symposium (CISS), Shanghai, China, 3–5 November 2021; pp. 1–5. [Google Scholar]
- Dong, L.; Han, S.; Zhu, D.; Mao, X. A Modified Polar Format Algorithm for Highly Squinted Missile-Borne SAR. IEEE Geosci. Remote Sens. Lett. 2023, 20, 1–5. [Google Scholar] [CrossRef]
- Boag, A.G.A. Backprojection Imaging of Moving Objects. IEEE Trans. Antennas Propag. 2021, 69, 4944–4954. [Google Scholar] [CrossRef]
- Zhang, M.; Ren, Z.; Zhang, G.; Zhang, C. THz ISAR imaging using GPU-accelerated phase compensated back projection algorithm. J. Infrared Millim. Waves 2022, 41, 448–456. [Google Scholar] [CrossRef]
- Arikan, O.; Munson, D.C., Jr. A New Back-Projection Algorithm for Spotlight-Mode SAR and ISAR. In Proceedings of the High Speed Computing II, Los Angeles, CA, USA, 17–18 January 1989; pp. 107–117. [Google Scholar]
- Gong, H.; Liu, Y.; Chen, X.; Wang, C. Scene optimization of GPU-based back-projection algorithm. J. Supercomput. 2023, 79, 4192–4214. [Google Scholar] [CrossRef]
- Guo, G.; Guo, L.; Wang, R.; Liu, W.; Li, L. Transient Scattering Echo Simulation and ISAR Imaging for a Composite Target-Ocean Scene Based on the TDSBR Method. Remote Sens. 2022, 14, 1183. [Google Scholar] [CrossRef]
- Sun, T.-P.; Cong, Z.; He, Z.; Ding, D. An Accelerated Time-Domain Iterative Physical Optics Method for Analyzing Electrically Large and Complex Targets. Electronics 2022, 12, 59. [Google Scholar] [CrossRef]
- Guo, G.; Guo, L.; Wang, R. ISAR Image Algorithm Using Time-Domain Scattering Echo Simulated by TDPO Method. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1331–1335. [Google Scholar] [CrossRef]
- Zhou, J.; Han, Y. Analyzing the electromagnetic scattering characteristics for plasma targets based on shooting and bouncing ray method. AIP Adv. 2019, 9, 065106. [Google Scholar] [CrossRef]
- Gordon, W.B. High frequency approximations to the physical optics scattering integral. IEEE Trans. Antennas Propag. 1994, 42, 427–432. [Google Scholar] [CrossRef]
- Fan, T.T.; Zhou, X.; Yu, W.M.; Zhou, X.Y.; Cui, T.J. Time-Domain Line-Integral Representations of Physical-Optics Scattered Fields. IEEE Trans. Antennas Propag. 2017, 65, 309–318. [Google Scholar] [CrossRef]
- Liao, C. Research on Nearfield Scattering Modeling of Ship on the Sea Surface Based on high Frequency Method (In Chinese). Master’s Thesis, University of Electronic Science and Technology of China, Chengdu, China, 2021. Available online: https://kns.cnki.net/kcms2/article/abstract?v=n6BwBobH4uvU7PG733EVJdhS9-f9LApXUEAHzK60Kgv6ciotFWwf11njOZZqPyjAOLTnfvU-beMgAqMR8blHbC9mFOJ0F5tkD-vf1xHSqT6eY_XonBN7ouPAQRKMghtFziV-7qPBjXZhfcEiaH_takq8r-_JoHJuM61BQbTbKyScQeIPY8_hM3AAmLBaJTfo9XIwNvOUOSI=&uni (accessed on 29 July 2024).
- Stratton, J.A.; Chu, L. Diffraction theory of electromagnetic waves. Phys. Rev. 1939, 56, 99. [Google Scholar] [CrossRef]
- Chu, L.J.; Stratton, J.A. Elliptic and spheroidal wave functions. J. Math. Phys. 1941, 20, 259–309. [Google Scholar] [CrossRef]
- He, X.-Y.; Wang, X.-B.; Zhou, X.; Zhao, B.; Cui, T.-J. Fast ISAR image simulation of targets at arbitrary aspect angles using a novel SBR method. Prog. Electromagn. Res. B 2011, 28, 129–142. [Google Scholar] [CrossRef]
- Guo, G.; Guo, L.; Wang, R. The Study on Near-Field Scattering of a Target Under Antenna Irradiation by TDSBR Method. IEEE Access 2019, 7, 113476–113487. [Google Scholar] [CrossRef]
- Tang, X.; Feng, Y.; Gong, X. Mo M-PO/SBR Algorithm Based on Collaborative Platform and Mixed Model. Trans. Nanjing Univ. Aeronaut. Astronaut. 2019, 36, 589–598. [Google Scholar] [CrossRef]
- Li, J.; Meng, W.; Chai, S.; Guo, L.; Xi, Y.; Wen, S.; Li, K. An Accelerated Hybrid Method for Electromagnetic Scattering of a Composite Target–Ground Model and Its Spotlight SAR Image. Remote Sens. 2022, 14, 6632. [Google Scholar] [CrossRef]
- Zhu, R. Speedup of Micromagnetic Simulations with C++ AMP on Graphics Processing Units. Comput. Sci. Eng. 2016, 18, 53–59. [Google Scholar] [CrossRef]
- Sihai, W.; Hu, Z.; Haotian, P.; Lu, C. Accelerated Parallelism in Numerical Simulation with C++ AMP. In Proceedings of the 2016 Workshop: Workshop High Performance Computing, Beijing, China, 14–16 November 2016; pp. 53–55. [Google Scholar]
- Wynters, E. Fast and easy parallel processing on GPUs using C++ AMP. J. Comput. Sci. Coll. 2016, 31, 27–33. [Google Scholar]
- Shyamala, K.; Kiran, K.R.; Rajeshwari, D. Design and implementation of GPU-based matrix chain multiplication using C++AMP. In Proceedings of the 2017 Second International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 22–24 February 2017; pp. 1–6. [Google Scholar]
- Damkjær, J. Stackless BVH Collision Detection for Physical Simulation; University of Copenhagen Universitetsparken: København, Denmark, 2007; Available online: http://image.diku.dk/projects/media/jesper.damkjaer.07.pdf (accessed on 29 July 2024).
- Chung, S.; Choi, M.; Youn, D.; Kim, S. Comparison of BVH and KD-tree for the GPGPU acceleration on real mobile devices. In Proceedings of the Frontier Computing: Theory, Technologies and Applications (FC 2018), Kyushu, Japan, 9–12 July 2019; pp. 535–540. [Google Scholar]
- Sopin, D.; Bogolepov, D.; Ulyanov, D. Real-time SAH BVH construction for ray tracing dynamic scenes. In Proceedings of the Графикoн‘2011, Moscow, Russia, 26–30 September 2011; pp. 74–77. [Google Scholar]
- Huipeng, Z.; Junling, W.; Di, X.; Xiaoyang, Q. The modified back projection algorithm for bistatic ISAR imaging of space objects. In Proceedings of the 2016 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Hong Kong, China, 5–8 August 2016; pp. 1–5. [Google Scholar]
- Xiao, D. Study on ISAR Imaging of Space Targets Using BP Technology; Nanjing University: Nanjing, China, 2017. [Google Scholar]
- Pu, L.; Zhang, X.; Yu, P.; Wei, S. A fast three-dimensional frequency-domain back projection imaging algorithm based on GPU. In Proceedings of the 2018 IEEE Radar Conference (RadarConf18), Oklahoma City, OK, USA, 23–27 April 2018; pp. 1173–1177. [Google Scholar]
- Li, Z.; Qiu, X.; Yang, J.; Meng, D.; Huang, L.; Song, S. An Efficient BP Algorithm Based on TSU-ICSI Combined with GPU Parallel Computing. Remote Sens. 2023, 15, 5529. [Google Scholar] [CrossRef]
- Afif, M.; Said, Y.; Atri, M. Computer vision algorithms acceleration using graphic processors NVIDIA CUDA. Clust. Comput. 2020, 23, 3335–3347. [Google Scholar] [CrossRef]
- Ufimtsev, P.Y. Elementary edge waves and the physical theory of diffraction. Electromagnetics 1991, 11, 125–160. [Google Scholar] [CrossRef]
Polarization | Calculation Time (s) | Memory (MB) | |||||
---|---|---|---|---|---|---|---|
This Paper | RL-GO | RL-GO | This Paper | RL-GO | |||
Figure 13a | VV | 207.96 | 186.4 | 2303.3 | 557.6 | 130.9 | 181.4 |
Figure 13b | HH | 433.195 | 103.1 | 1427.43 | 552.1 | 136.4 | 185.1 |
Parameter | Value |
---|---|
1.75 GHz | |
3 GHz | |
90 | |
60 or 120 | |
0.05 m | |
0.05 m | |
Sampling points | 200 |
Polarization | VV |
SBR | RL-GO | |||
---|---|---|---|---|
Time (s) | Memory (MB) | Time (s) | Memory (MB) | |
Figure 16a,d | 2423.3 | 76.2 | 1584.2 | 177.8 |
Figure 16b,e | 2669.8 | 78.4 | 1614.3 | 179.6 |
Figure 16c,f | 2623.3 | 72.5 | 1474.1 | 179.5 |
SBR | RL-GO | |||
---|---|---|---|---|
Time (s) | Memory (MB) | Time (s) | Memory (MB) | |
Figure 18a,d | 2315.2 | 72.4 | 1655.6 | 194.6 |
Figure 18b,e | 2647.05 | 74.2 | 1702.4 | 202 |
Figure 18c,f | 2872.9 | 77.1 | 1764.2 | 196.9 |
Parameter | Value |
---|---|
1.75 GHz | |
3 GHz | |
90 | |
60 | |
0.05 m | |
0.05 m | |
Sampling points | 600 |
Polarization | VV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Yang, P.; Zhang, R.; Wu, R. A Fast Inverse Synthetic Aperture Radar Imaging Scheme Combining GPU-Accelerated Shooting and Bouncing Ray and Back Projection Algorithm under Wide Bandwidths and Angles. Electronics 2024, 13, 3062. https://doi.org/10.3390/electronics13153062
Chen J, Yang P, Zhang R, Wu R. A Fast Inverse Synthetic Aperture Radar Imaging Scheme Combining GPU-Accelerated Shooting and Bouncing Ray and Back Projection Algorithm under Wide Bandwidths and Angles. Electronics. 2024; 13(15):3062. https://doi.org/10.3390/electronics13153062
Chicago/Turabian StyleChen, Jiongming, Pengju Yang, Rong Zhang, and Rui Wu. 2024. "A Fast Inverse Synthetic Aperture Radar Imaging Scheme Combining GPU-Accelerated Shooting and Bouncing Ray and Back Projection Algorithm under Wide Bandwidths and Angles" Electronics 13, no. 15: 3062. https://doi.org/10.3390/electronics13153062
APA StyleChen, J., Yang, P., Zhang, R., & Wu, R. (2024). A Fast Inverse Synthetic Aperture Radar Imaging Scheme Combining GPU-Accelerated Shooting and Bouncing Ray and Back Projection Algorithm under Wide Bandwidths and Angles. Electronics, 13(15), 3062. https://doi.org/10.3390/electronics13153062