An Efficient Motion Adjustment Method for a Dual-Arm Transfer Robot Based on a Two-Level Neural Network and a Greedy Algorithm
Abstract
:1. Introduction
2. Two-Level DNN for Contact Force Estimation
2.1. Encoder Design
2.2. First-Level Subnetwork
2.3. Second-Level Subnetwork
3. Experimental Results
3.1. Validation of the Developed DNN in Nursing Environment
3.2. Practical Application to Dual-Arm Patient Transfer Robot
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mukai, T.; Hirano, S.; Nakashima, H.; Sakaida, Y.; Guo, S. Realization and safety measures of patient transfer by nursing-care assistant robot riba with tactile sensors. J. Robot. Mechatron. 2011, 23, 360–369. [Google Scholar] [CrossRef]
- Ding, M.; Ikeura, R.; Mori, Y.; Mukai, T.; Hosoe, S. Measurement of human body stiffness for lifting-up motion generation using nursing-care assistant robot—RIBA. In Proceedings of the SENSORS, 2013 IEEE: Piscataway, NJ, USA, Baltimore, MD, USA, 3–6 November 2013; pp. 1–4. [Google Scholar] [CrossRef]
- Mukai, T.; Hirano, S.; Nakashima, H.; Yoshida, M.; Guo, S.; Hayakawa, Y. Manipulation using tactile information for a nursing-care assistant robot in whole-body contact with the object. Trans. Jpn. Soc. Mech. Eng. Ser. C 2011, 77, 3794–3807. [Google Scholar] [CrossRef]
- Mukai, T.; Onishi, M.; Odashima, T.; Hirano, S.; Luo, Z. Development of the tactile sensor system of a human-interactive robot “RI-MAN”. IEEE Trans. Robot. 2008, 24, 505–512. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, S.; Yin, Y.; Jiang, Z.; Liu, T. Design and compliant control of a piggyback transfer robot. J. Mech. Robot. 2022, 14, 031009. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, G.; Liu, J.; Guo, S.; Mukai, T. Biomimetic design of a chest carrying nursing-care robot for transfer task. In Proceedings of the 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO), Kuala Lumpur, Malaysia, 12–15 December 2018. [Google Scholar]
- Li, Y.; Guo, S.; Zhu, L.; Mukai, T.; Gan, Z. Enhanced probabilistic inference algorithm using probabilistic neural networks for learning control. IEEE Access 2019, 7, 184457–184467. [Google Scholar] [CrossRef]
- Li, Y.; Guo, S.; Zhu, L.; Mukai, T.; Gan, Z. A recurrent reinforcement learning approach applicable to highly uncertain environments. Int. J. Adv. Robot. Syst. 2020, 17, 1729881420916258. [Google Scholar] [CrossRef]
- Mukai, T.; Hirano, S.; Nakashima, H.; Kato, Y.; Sakaida, Y.; Guo, S.; Hosoe, S. Development of a nursing-care assistant robot RIBA that can lift a human in its arms. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010. [Google Scholar]
- Mukai, T.; Hirano, S.; Yoshida, M.; Nakashima, H.; Guo, S.; Hayakawa, Y. Whole-body contact manipulation using tactile information for the nursing-care assistant robot riba. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011. [Google Scholar]
- Mukai, T.; Hirano, S.; Yoshida, M.; Nakashima, H.; Guo, S.; Hayakawa, Y. Tactile-based motion adjustment for the nursing-care assistant robot RIBA. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011. [Google Scholar]
- Zyada, Z.; Hayakawa, Y.; Hosose, S. Kinematic analysis of a two-link object for whole arm manipulation. In Proceedings of the Proceedings of the 9th WSEAS International Conference on Signal Processing, Robotics and Automation, Stevens Point, WI, USA, 20–22 February 2010. [Google Scholar]
- Ding, M.; Ikeura, R.; Mukai, T.; Nagashima, H.; Hirano, S.; Matsuo, K.; Hosoe, S. Comfort estimation during lift-up using nursing-care robot—RIBA. In Proceedings of the 2012 First International Conference on Innovative Engineering Systems, Alexandria, Egypt, 7–9 December 2012. [Google Scholar]
- Ji, Z.; Wang, H.; Jiang, G.; Li, L. Analysis of muscle activity utilizing bench presses in the AnyBody simulation modelling system. Model. Simul. Eng. 2016, 1, 3649478. [Google Scholar] [CrossRef]
- Ueda, J.; Ming, D.; Krishnamoorthy, V.; Shinohara, M.; Ogasawara, T. Individual muscle control using an exoskeleton robot for muscle function testing. IEEE Trans. Neural Syst. Rehabil. Eng. 2010, 18, 339–350. [Google Scholar] [CrossRef]
- Ding, M.; Matsubara, T.; Funaki, Y.; Ikeura, R.; Mukai, T.; Ogasawara, T. Generation of comfortable lifting motion for a human transfer assistant robot. Int. J. Intell. Robot. Appl. 2017, 1, 74–85. [Google Scholar] [CrossRef]
- Frazier, R.M.; Carter-Templeton, H.; Wyatt, T.H.; Wu, L. Current trends in robotics in nursing patents—A glimpse into emerging innovations. CIN Comput. Inform. Nurs. 2019, 37, 290–297. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Phan, T.Q.; Hong, W.; Chun, S.Y. Physiology-based augmented deep neural network frameworks for ECG biometrics with short ECG pulses considering varying heart rates. Pattern Recognit. Lett. 2022, 156, 1–6. [Google Scholar] [CrossRef]
- Yan, P.; Duan, S.; Luo, X.; Zhang, N.; Deng, Y. Development and validation of a deep neural network–based model to predict acute kidney injury following intravenous administration of iodinated contrast media in hospitalized patients with chronic kidney disease: A multicohort analysis. Nephrol. Dial. Transplant. 2022, 38, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Olamat, A.; Ozel, P.; Atasever, S. Deep learning methods for multi-channel EEG-based emotion recognition. Int. J. Neural Syst. 2022, 32, 2250021. [Google Scholar] [CrossRef] [PubMed]
- Yun, M.; Kim, J.; Do, K. Estimation of wave-breaking index by learning nonlinear relation using multilayer neural network. J. Mar. Sci. Eng. 2022, 10, 50–66. [Google Scholar] [CrossRef]
- Gao, Q.; Liu, J.; Ju, Z.; Zhang, X. Dual-hand detection for human–robot interaction by a parallel network based on hand detection and body pose estimation. IEEE Trans. Ind. Electron. 2019, 66, 9663–9672. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, 5998–6008. [Google Scholar]
- Wang, X.; Girshick, R.; Gupta, A.; He, K. Non-local neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Cao, Z.; Hidalgo, G.; Simon, T.; Wei, S.E.; Sheikh, Y. OpenPose: Realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 172–186. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Wu, J.; Li, S.; Liu, J.; Yokota, H.; Guo, S. Accurate and real-time human-joint-position estimation for a patient-transfer robot using a two-level convolutional neutral network. Robot. Auton. Syst. 2021, 139, 103735. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Jiang, S.; Min, W.; Mei, S. Hierarchy-dependent cross-platform multi-view feature learning for venue category prediction. IEEE Trans. Multimed. 2018, 21, 1609–1619. [Google Scholar] [CrossRef]
- Min, W.; Mei, S.; Liu, L.; Wang, Y.; Jiang, S. Multi-task deep relative attribute learning for visual urban perception. IEEE Trans. Image Process. 2019, 29, 657–669. [Google Scholar] [CrossRef] [PubMed]
- Abdeljawad, A.; Grohs, P. Approximations with deep neural networks in sobolev time-space. Anal. Appl. 2022, 20, 499–541. [Google Scholar] [CrossRef]
- Lin, Z.; Akin, H.; Rao, R.; Hie, B.; Zhu, Z.; Lu, W.; Rives, A. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 2023, 379, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Vokoun, C.R.; Huang, X.; Jackson, M.B.; Basso, M.A. Response normalization in the superficial layers of the superior colliculus as a possible mechanism for saccadic averaging. J. Neurosci. 2014, 34, 7976–7987. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Tang, X.; Lim, A.; Han, K.; Li, C.; Yuan, J. Revisiting modified greedy algorithm for monotone submodular maximization with a knapsack constraint. Proc. ACM Meas. Anal. Comput. Syst. 2021, 5, 1–22. [Google Scholar]
- Moon, G.; Chang, J.Y.; Suh, Y.; Lee, K.M. Holistic planimetric prediction to local volumetric prediction for 3d human pose estimation. arXiv 2017, arXiv:1706.0475. [Google Scholar]
Action | a1 | a2 | a4 | a5 | a6 | a7 | a8 | a9 |
---|---|---|---|---|---|---|---|---|
σ1, σ2 | 0, 0 | 0, 5 | 5, 0 | 5, 5 | 5, −5 | −5, 0 | −5, 5 | −5, −5 |
Method | Back | Thigh | Average | Speed (ms) |
---|---|---|---|---|
Method in [12] | 5 | 20.1 | 12.6 | 1 |
Method in [16] | 21 | 62.5 | 41.8 | 2 |
Our method | 80.7 | 87.3 | 84.0 | 30 |
Subjects | Gender | Age (Y/O) | Weight (kg) |
---|---|---|---|
Sub1 | Male | 29 | 81 |
Sub2 | Female | 41 | 66 |
Sub3 | Male | 29 | 78 |
Sub4 | Female | 35 | 52 |
Sub5 | Male | 44 | 65 |
Sub6 | Male | 56 | 70 |
Sub7 | Male | 30 | 76 |
Sub8 | Female | 30 | 65 |
Sub9 | Male | 21 | 76 |
Sub10 | Male | 46 | 60 |
Subjects | Thigh | Back | ||||
---|---|---|---|---|---|---|
Before | After | Change | Before | After | Change | |
Sub1 | 512.75 | 436.15 | −2.96 | 161.47 | 79.61 | −79.20 |
Sub2 | 447.07 | 444.11 | −65.23 | 209.10 | 129.90 | −72.32 |
Sub3 | 477.16 | 411.93 | −75.53 | 189.67 | 117.35 | −36.26 |
Sub4 | 322.27 | 246.74 | −16.22 | 129.85 | 93.59 | −34.94 |
Sub5 | 375.87 | 359.65 | −6.22 | 111.03 | 76.09 | −39.63 |
Sub6 | 423.66 | 417.44 | −102.05 | 183.40 | 143.77 | −36.92 |
Sub7 | 387.91 | 285.86 | −1.89 | 158.71 | 121.79 | +41.00 |
Sub8 | 359.55 | 357.66 | −56.00 | 45.75 | 86.75 | −78.23 |
Sub9 | 423.25 | 367.25 | +43.81 | 130.71 | 52.48 | +60.38 |
Sub10 | 278.46 | 322.27 | −76.60 | 69.46 | 129.85 | −81.86 |
Subject | Before | After | Change |
---|---|---|---|
Sub1 | 4 | 5 | +1 |
Sub2 | 2 | 5 | +3 |
Sub3 | 5 | 4 | +1 |
Sub4 | 2 | 3 | +1 |
Sub5 | 2 | 3 | +1 |
Sub6 | 3 | 4 | +1 |
Sub7 | 1 | 4 | +3 |
Sub8 | 1 | 4 | +3 |
Sub9 | 4 | 3 | −1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Liu, Q.; Wang, K.; Yang, Z.; Guo, S. An Efficient Motion Adjustment Method for a Dual-Arm Transfer Robot Based on a Two-Level Neural Network and a Greedy Algorithm. Electronics 2024, 13, 3090. https://doi.org/10.3390/electronics13153090
Chen M, Liu Q, Wang K, Yang Z, Guo S. An Efficient Motion Adjustment Method for a Dual-Arm Transfer Robot Based on a Two-Level Neural Network and a Greedy Algorithm. Electronics. 2024; 13(15):3090. https://doi.org/10.3390/electronics13153090
Chicago/Turabian StyleChen, Mengqian, Qiming Liu, Kai Wang, Zhiqiang Yang, and Shijie Guo. 2024. "An Efficient Motion Adjustment Method for a Dual-Arm Transfer Robot Based on a Two-Level Neural Network and a Greedy Algorithm" Electronics 13, no. 15: 3090. https://doi.org/10.3390/electronics13153090
APA StyleChen, M., Liu, Q., Wang, K., Yang, Z., & Guo, S. (2024). An Efficient Motion Adjustment Method for a Dual-Arm Transfer Robot Based on a Two-Level Neural Network and a Greedy Algorithm. Electronics, 13(15), 3090. https://doi.org/10.3390/electronics13153090