Design Proposals for High-Voltage Stacked Configuration GaN Module
Abstract
:1. Introduction
- Energy gap;
- Electric field;
- Thermal conductivity;
- Melting point;
- Electron velocity.
- Electromobility: 800 V is often used in electric cars of the latest generation. This higher voltage enables the faster charging of batteries and increases the performance of electric motors. Electric cars with a voltage of 800 V tend to achieve higher efficiency and performance, which ensures longer ranges and shorter charging times.
- High-power electric drive systems: 800 V applications are also used in high-power electric drive systems such as electric racing cars, high-speed trains, and so on. This voltage provides enough energy to drive these powerful vehicles.
- Alternative energy sources: Some alternative energy sources, such as solar and wind power plants, can also use 800 V. This higher voltage allows for more efficient transmission and distribution of the produced current into the electrical networks.
- High-performance server farms: 800 V is used in some cases in the field of IT and data centers. This higher voltage allows for increased efficiency and lower energy losses when operating powerful server systems and devices.
- Experimental and research applications: In some experimental and research areas, 800 V can be used to explore new technologies, perform tests, and verify concepts in the field of electricity and energy.
2. Selection of GaN Power Transistor Technology
3. Investigation of the Driving Configuration Properties: Simulation Analyses
- Low losses;
- High efficiency;
- The possibility of operation at high switching frequencies.
3.1. Simulation of the Functionality of the HV Stacked GaN Transistor Module
- Input voltage: 100 V–400 V;
- Output voltage: 200 V–800 V;
- Output power: max 600 W (the load was constantly set to RLoad = 1.14 kΩ);
- Switching frequency: 100 kHz;
- Duty cycle: D = 0.5.
3.1.1. Simulation of Unipolar Driving Functionality (0 V/5 V): GaN Module Driving_v1
3.1.2. Simulation of Low-Side Driving (−5 V/+5 V): GaN Module_v2
3.1.3. Simulation of Pulsed Transformer Driver: GaN Module_v3
4. Experimental Analysis of Selected Driving Technique
- Input voltage: 100 V–400 V;
- Output voltage: 200 V–800 V;
- Output power: max 600 W (the load was constantly set to RLoad = 1.14 kΩ);
- Switching frequency: 100 kHz;
- Duty cycle: D = 0.5;
- Driving voltage range 0 V ÷ 5 V.
4.1. GaN Systems Stacked Module
4.2. Nexperia Transistor Stacked Module
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Juncheng, L.; Di Maso, P. GaN Enables Efficient, Cost-Effective 800V EV Traction, EDN—Electronics Community for Engineers. 22 May 2020. Available online: https://www.edn.com/gan-enables-efficient-cost-effective-800v-ev-traction-inverters/ (accessed on 15 March 2023).
- McDonald, T.; Butler, S.W. Progress and Current Topics of JEDEC JC-70.1 Power GaN Device Quality and Reliability Standards Activity: Or: What is the Avalanche capability of your GaN Transistor? In Proceedings of the 2021 IEEE International Reliability Physics Symposium (IRPS), Monterey, CA, USA, 21–25 March 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Koscelnik, J.; Prazenica, M.; Frivaldsky, M.; Ondirko, S. Design and Simulation of Multi-element Resonant LCTLC Converter with HF Transformer. In Proceedings of the ELEKTRO 10th International Conference, Rajecke Teplice, Slovakia, 19–20 May 2014. [Google Scholar]
- Custer, J.; Formicone, G.; Walker, J.L.B. Recent advances in kW-level pulsed GaN transistors with very high efficiency. In Proceedings of the 2016 21st International Conference on Microwave, Radar and Wireless Communications (MIKON), Krakow, Poland, 9–11 May 2016; pp. 1–4. [Google Scholar] [CrossRef]
- GCantone; Pulvirenti, F. Integrated solutions and related technologies for gate drivers of GaN transistors. In Proceedings of the 2020 AEIT International Annual Conference (AEIT), Catania, Italy, 23–25 September 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Dobrucky, B.; Kascak, S.; Prazenica, M.; Jarabicova, M. Improving Efficiency of Hybrid Electric Vehicle Using Matrix Converters. Elektron. Elektrotechnika 2019, 25, 29–35. [Google Scholar] [CrossRef]
- Briz, P.; Sarnago, H.; Burdío, J.M.; Lucía, O. High-Voltage Nanosecond Pulse Generator Using Series-Stacked Enhancement-Mode GaN Transistors. In Proceedings of the 2024 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 25–29 February 2024; pp. 3179–3183. [Google Scholar] [CrossRef]
- Kascak, S.; Prazenica, M.; Jarabicova, M.; Paskala, M. Interleaved DC/DC Boost Converter with Coupled Inductors. Adv. Electr. Electron. Eng. 2018, 16, 147–154. [Google Scholar] [CrossRef]
- Ho, C.-Y.; Liang, T.-J.; Chen, K.-H.; Liao, K.-F. Design and Implementation of Cascoded Dual-Half-Bridge Resonant Converter with GaN E-HEMT for High Input Voltage Applications. In Proceedings of the 2024 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 16–20 March 2024; pp. 114–121. [Google Scholar] [CrossRef]
- Shojaie, M.; Elsayad, N.; Mohammed, O.A. Design of an all-GaN bidirectional DC-DC converter for medium voltage DC ship power systems using series-stacked GaN modules. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 2155–2161. [Google Scholar]
- GN008: GaN Switching Loss Simulation Using LTSpice 05/2018. Available online: https://gansystems.com/ (accessed on 16 June 2023).
- Spanik, P.; Dobrucky, B.; Frivaldsky, M.; Drgoňa, P.; Kurytnik, I. Measurement of swtitching losses in power transistor structure. Elektron. Elektrotechnika 2008, 82, 75–78. [Google Scholar]
- Frivaldský, I.M.; Drgoňa, P.; Spanik, P. Experimental analysis and optimization of key parameters of ZVS mode and its application in the proposed LLC converter designed for distributed power system application. Int. J. Electr. Power Energy Syst. 2013, 47, 448–456. [Google Scholar] [CrossRef]
- Frivaldský, M.; Dobrucky, B.; Prazenica, M.; Koscelnik, J. Multi-tank resonant topologies as key design factors for reliability improvement of power converter for power energy applications. Electr. Eng. 2015, 97, 287–302. [Google Scholar] [CrossRef]
- Kandrac, J.; Frivaldsky, M.; Prazenica, M.; Simonova, A. Design and Verification of proposed Operation Modes of LLC Converter. Elektron. Elektrotechnika 2012, 18, 27–30. [Google Scholar] [CrossRef]
- Augutis, V.; Gailius, D.; Styra, D.; Dumčius, A. Transistor Control with Additional Charge Pumping Circuit. Elektron. Elektrotechnika 2007, 78, 79–82. [Google Scholar]
- Kascak, S.; Laskody, T.; Prazenica, M.; Konarik, R. Current control contribution to a single-phase induction motor fed by single-leg voltage source inverter. In Proceedings of the 2016 ELEKTRO, Strbske Pleso, Slovakia, 16–18 May 2016; pp. 172–175. [Google Scholar] [CrossRef]
- Hruska, K.; Kindl, V.; Pechanek, R. Design of a high-speed permanent magnet synchronous motor for electric kart. Electr. Eng. 2017, 99, 1141–1150. [Google Scholar] [CrossRef]
- Varecha, P.; Makys, P.; Pacha, M.; Zossak, S. Effect of MOSFET lifetime on reliability of low-side MOSFET current sensing technique. In Proceedings of the 2020 ELEKTRO, Taormina, Italy, 25–28 May 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Hsia, C.; Li, C.-Y.; Lu, D.-F.; Chen, T.-Y. Integrated All-GaN Driver for High-voltage DC-DC Power Converters. In Proceedings of the 2023 20th International SoC Design Conference (ISOCC), Jeju, Republic of Korea, 28–28 October 2023; pp. 175–176. [Google Scholar] [CrossRef]
- Otsu, S.; Ujita, S.; Tanaka, K.; Maede, M.; Niimi, H.; Ochi, S. A 2 × 2 paralleling GaN half-bridge power module for high-density 500kHz 3.3kW CLLC converter. In Proceedings of the 2023 IEEE Applied Power Electronics Conference and Exposition (APEC), Orlando, FL, USA, 19–23 March 2023; pp. 1627–1632. [Google Scholar] [CrossRef]
- Zelnik, R.; Pipiska, M. Simulation analysis of switching performance of GaN power transistors in a high-voltage configuration. In Proceedings of the 2020 21st International Scientific Conference on Electric Power Engineering (EPE), Prague, Czech Republic, 19–21 October 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Shojaie, M.; Elsayad, N.; Moradisizkoohi, H.; Mohammed, O.A. Design and Experimental Verification of a High-Voltage Series-Stacked GaN eHEMT Module for Electric Vehicle Applications. IEEE Trans. Transp. Electrif. 2019, 5, 31–47. [Google Scholar] [CrossRef]
Uin [V] | Iin [mA] | Uout [V] | Iout [mA] | Pin [W] | Pout [W] | Eff [%] | k [%] |
---|---|---|---|---|---|---|---|
100 | 0.40 | 199.47 | 0.17 | 39.55 | 34.90 | 88.25 | - |
200 | 0.72 | 400.59 | 0.35 | 144.31 | 140.76 | 97.54 | - |
300 | 1.09 | 601.63 | 0.53 | 325.72 | 317.51 | 97.48 | - |
400 | 1.44 | 802.59 | 0.70 | 577.16 | 565.05 | 97.90 | - |
Uin [V] | Iin [mA] | Uout [V] | Iout [mA] | Pin [W] | Pout [W] | Eff [%] | k [%] |
---|---|---|---|---|---|---|---|
100 | 124 | 201.3 | 72 | 12.4 | 7.87 | 80.31 | - |
150 | 197 | 302.2 | 115 | 29.55 | 20.01 | 85.23 | 30 |
200 | 385 | 402.6 | 222 | 77 | 74.281 | 94.36 | 26 |
250 | 482 | 503.7 | 279 | 120.5 | 116.62 | 96.78 | 29 |
300 | 579 | 602.3 | 336 | 173.7 | 168.67 | 96.52 | 32 |
350 | 674 | 704 | 390 | 235.9 | 228.15 | 96.32 | 37 |
400 | - | - | - | - | - | - | - |
Uin [V] | Iin [mA] | Uout [V] | Iout [mA] | Pin [W] | Pout [W] | Eff [%] | k [%] |
---|---|---|---|---|---|---|---|
100 | 402 | 199.8 | 192 | 40.2 | 38.36 | 95.43 | 27 |
150 | 596 | 298.7 | 287 | 89.4 | 85.73 | 95.89 | 26.7 |
200 | 787 | 396.4 | 383 | 157.4 | 151.82 | 96.46 | 28.2 |
250 | 979 | 494.6 | 477 | 244.75 | 235.92 | 96.39 | 29.9 |
300 | 1168 | 591.7 | 573 | 350.4 | 339.04 | 96.76 | 30.4 |
350 | 1360 | 688.4 | 668 | 476 | 459.85 | 96.61 | 27.9 |
400 | 1533 | 775.6 | 754 | 613.2 | 584.80 | 95.37 | 25.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frivaldsky, M.; Zelnik, R.; Spanik, P. Design Proposals for High-Voltage Stacked Configuration GaN Module. Electronics 2024, 13, 3198. https://doi.org/10.3390/electronics13163198
Frivaldsky M, Zelnik R, Spanik P. Design Proposals for High-Voltage Stacked Configuration GaN Module. Electronics. 2024; 13(16):3198. https://doi.org/10.3390/electronics13163198
Chicago/Turabian StyleFrivaldsky, Michal, Richard Zelnik, and Pavol Spanik. 2024. "Design Proposals for High-Voltage Stacked Configuration GaN Module" Electronics 13, no. 16: 3198. https://doi.org/10.3390/electronics13163198
APA StyleFrivaldsky, M., Zelnik, R., & Spanik, P. (2024). Design Proposals for High-Voltage Stacked Configuration GaN Module. Electronics, 13(16), 3198. https://doi.org/10.3390/electronics13163198