Multi-Trajectory Planning Control Strategy for Hydropower Plant Bridge Crane Based on Evaluation Algorithm
Abstract
:1. Introduction
- (1)
- The multi-trajectory integrated control strategy of the crane is proposed to ensure that the load swing angle, residual swing angle, braking distance and travel time, and other indicators are optimized when the crane reaches different desired positions.
- (2)
- Compared with the optimization process of the traditional trajectory algorithm, the trajectory evaluation method based on the entropy weight TOPSIS evaluation algorithm takes the actual operation results of the crane as the evaluation data, without searching for the optimal parameters, and avoids the accumulation of errors caused by changes in system parameters during the walking process.
- (3)
- Compared with the closed-loop control strategy, the control method is simple in structure and easy to implement. At the same time, the response time delay and frequent parameter adjustment of the feedback mechanism are avoided.
2. Comprehensive Evaluation of Trajectory Based on Entropy Weight—TOPSIS Method
3. Entropy Weight TOPSIS Evaluation and Construction of Evaluation Index System
3.1. Entropy Weight TOPSIS
- (1)
- Normalization and standardization
- (2)
- Calculation of entropy weights
- (3)
- Determine positive/negative ideal solutions
- (4)
- Calculate the distance from each solution to the positive/negative ideal solution
- (5)
- Scorei is calculated to calculate the closeness between each trajectory scheme and the optimal scheme:
3.2. Crane Kinematics Analysis
- (1)
- The elastic deformation of the system is ignored, and the quality and length changes of the wire rope (hanging rope) are ignored;
- (2)
- Factors such as wind, air resistance and friction at the connection between the wire rope and the trolley are ignored;
- (3)
- The hoisting weight is treated as a particle without volume.
3.3. Establishment of Trajectory Evaluation Index
- (1)
- Trajectory Smoothing
- (2)
- Anti-interference
4. Simulation and Experiment Results
4.1. Simulation Modeling Based on Adams and Matlab
4.2. Simulation and Analysis of Dynamic Characteristics of Bridge Cranes
4.3. Evaluation Process
4.4. Experiment
4.5. Analysis and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chao, C.-T.; Sutarna, N.; Chiou, J.-S.; Wang, C.-J. An Optimal Fuzzy Pid Controller Design Based on Conventional Pid Control and Nonlinear Factors. Appl. Sci. 2019, 9, 1224. [Google Scholar] [CrossRef]
- Yu, Z.; Dong, H.-M.; Liu, C.-M. Research on Swing Model and Fuzzy Anti Swing Control Technology of Bridge Crane. Machines 2023, 11, 579. [Google Scholar] [CrossRef]
- Sun, Z.; Ling, Y.; Tan, X.; Zhou, Y.; Sun, Z. Designing and Application of Type-2 Fuzzy PID Control for Overhead Crane Systems. Int. J. Intell. Robot. Appl. 2021, 5, 10–22. [Google Scholar] [CrossRef]
- Pham, H.V.; Hoang, Q.-D.; Van Pham, M.; Do, D.M.; Phi, N.H.; Hoang, D.; Le, H.X.; Kim, T.D.; Nguyen, L. An Efficient Adaptive Fuzzy Hierarchical Sliding Mode Control Strategy for 6 Degrees of Freedom Overhead Crane. Electronics 2022, 11, 713. [Google Scholar] [CrossRef]
- Wang, T.; Tan, N.; Qiu, J.; Yu, Y.; Zhang, X.; Zhai, Y.; Labati, R.D.; Piuri, V.; Scotti, F. Global-Equivalent Sliding Mode Control Method for Bridge Crane. IEEE Access 2021, 9, 160372–160382. [Google Scholar] [CrossRef]
- Li, J.; Li, X.-Y. Design of Fuzzy-LQR Anti-Sway Controller for Bridge Crane Lifting Weights. Mach. Des. Manuf. 2018, 8, 233–236. [Google Scholar]
- Maghsoudi, M.J.; Mohamed, Z.; Sudin, S.; Buyamin, S.; Jaafar, H.; Ahmad, S. An Improved Input Shaping Design for an Efficient Sway Control of a Nonlinear 3D Overhead Crane with Friction. Mech. Syst. Signal Process. 2017, 92, 364–378. [Google Scholar] [CrossRef]
- Yang, B.; Liu, Z.-X.; Liu, H.-K.; Li, Y.; Lin, S. A Gpc-Based Multi-Variable Pid Control Algorithm and Its Application in Anti-Swing Control and Accurate Positioning Control for Bridge Cranes. Int. J. Control. Autom. Syst. 2020, 18, 2522–2533. [Google Scholar] [CrossRef]
- Li, H.; Hui, Y.-B.; Wang, Q.; Wang, H.-X.; Wang, L.-J. Design of Anti-Swing PID Controller for Bridge Crane Based on PSO and SA Algorithm. Electronics 2022, 11, 3143. [Google Scholar] [CrossRef]
- Li, H.; Hui, Y.; Ma, J.; Wang, Q.; Zhou, Y.; Wang, H. Research on Variable Universe Fuzzy Multi-Parameter Self-Tuning PID Control of Bridge Crane. Appl. Sci. 2023, 13, 4830. [Google Scholar] [CrossRef]
- Wen, T.; Fang, Y.; Lu, B. Neural Network-Based Adaptive Sliding Mode Control for Underactuated Dual Overhead Cranes Suffering from Matched and Unmatched Disturbances. Auton. Intell. Syst. 2022, 2, 1. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, H.; Gu, C. The Prescribed-Time Sliding Mode Control for Underactuated Bridge Crane. Electronics 2024, 13, 219. [Google Scholar] [CrossRef]
- Bhayadia, A.; Olivett, A.; Singh, T.; Karami, M.A. Input Shaping for Travelling Wave Generation. Smart Mater. Struct. 2022, 31, 055006. [Google Scholar] [CrossRef]
- Cho, C.N.; Song, Y.H.; Lee, C.H.; Kim, H.J. Input Shaping-Based Corner Rounding Algorithm for Machining Short Line Segments. Int. J. Adv. Manuf. Technol. 2018, 97, 105–116. [Google Scholar] [CrossRef]
- Qiu, D.; Qiu, D.; Wu, B.; Gu, M.; Zhu, M. Hierarchical Control of Trajectory Planning and Trajectory Tracking for Autonomous Parallel Parking. IEEE Access 2021, 9, 94845–94861. [Google Scholar] [CrossRef]
- Gonzalez, D.; Perez, J.; Milanes, V.; Nashashibi, F. A Review of Motion Planning Techniques for Automated Vehicles. IEEE Trans. Intell. Transp. Syst. 2015, 17, 1135–1145. [Google Scholar] [CrossRef]
- Kim, J.; Croft, E.A. Online Near Time-Optimal Trajectory Planning for Industrial Robots. Robot. Comput. Manuf. 2019, 58, 158–171. [Google Scholar] [CrossRef]
- Singhose, W.; Porter, L.; Kenison, M.; Kriikku, E. Effects of hoisting on the input shaping control of gantry cranes. Control Eng. Pract. 2000, 8, 1159–1165. [Google Scholar] [CrossRef]
- Kim, D.; Singhose, W. Performance studies of human operators driving double-pendulum bridge cranes. Control Eng. Pract. 2010, 18, 567–576. [Google Scholar] [CrossRef]
- Masoud, Z.N.; Alhazza, K.A. Frequency-modulation input shaping control of doublependulum overhead cranes. J. Dyn. Syst. Meas. Control 2014, 136, 021005. [Google Scholar] [CrossRef]
- Huang, W.; Niu, W.; Zhou, X.; Gu, W. Anti-Sway Control of Variable Rope Length Container Crane Based on Phase Plane Trajectory Planning. J. Vib. Control 2023, 30, 1227–1240. [Google Scholar] [CrossRef]
- Huang, W.; Niu, W.; Bai, H.; Gu, W. Double-Step Acceleration Input Shaping Anti-Sway Control Based on Phase Plane Trajectory Planning. Int. J. Control Autom. Syst. 2024, 22, 419–429. [Google Scholar] [CrossRef]
- Hoang, N.Q.; Lee, S.G.; Kim, H.; Moon, S.C. Trajectory planning for overhead crane by trolley acceleration shaping. J. Mech. Sci. Technol. 2014, 28, 2879–2888. [Google Scholar] [CrossRef]
- Ouyang, H.; Zhang, G.; Mei, L.; Deng, X. Vibration Reduction for Human-Operated Overhead Cranes Using S-shaped Motion Trajectory. In Proceedings of the 35th Chinese Control Conference, Chengdu, China, 27–29 July 2016. [Google Scholar]
- Tho, H.D.; Kaneshige, A.; Terashima, K. Minimum-Time S-Curve Commands for Vibration-Free Transportation of an Overhead Crane with Actuator Limits. Control Eng. Pract. 2020, 98, 104390. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, Z. An improved quad S-curve acceleration and deceleration control algorithm based on particle swarm optimization. Sci. Technol. Eng. 2023, 23, 3338–3344. [Google Scholar]
- Vu, M.N.; Schwegel, M.; Hartl-Nesic, C.; Kugi, A. Sampling-based trajectory (re)planning for differentially flat systems: Application to a 3D gantry crane. IFAC Pap. Online 2022, 55, 38. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, E.; Guo, H.; Fang, Y.; Li, H. Lifting path planning of mobile cranes based on an improved RRT algorithm. Adv. Eng. Inform. 2021, 50, 101376. [Google Scholar] [CrossRef]
- Wu, Z.; Xia, X. Optimal motion planning for overhead cranes. IET Control Theory Appl. 2014, 8, 1833–1842. [Google Scholar] [CrossRef]
- Sun, N.; Wu, Y.; Chen, H.; Fang, Y. An energy-optimal solution for transportation control of cranes with double pendulum dynamics: Design and experiments. Mech. Syst. Signal Process. 2018, 102, 87–101. [Google Scholar] [CrossRef]
- Bae, J.-H.; Cha, J.-H.; Ha, S. Heave Reduction of Payload through Crane Control Based on Deep Reinforcement Learning Using Dual Offshore Cranes. J. Comput. Des. Eng. 2023, 10, 414–424. [Google Scholar] [CrossRef]
- Xiong, G.; Helo, P.; Ekström, S.; Shen, Z. A Service-Oriented Autonomous Crane System. IEEE Trans. Comput. Soc. Syst. 2024, 1–16. [Google Scholar] [CrossRef]
S | Algorithms | A | B | C | D | E | F |
---|---|---|---|---|---|---|---|
10 m | T-shaped trajectory | 45.2 s | 0.63754° | 0.2207 m/s | 1.83091° | 0.55649° | 0.14435° |
S-shaped trajectory | 55 s | 0.40612° | 0.1818 m/s | 0.91391° | 0.15685° | 0.13813° | |
Cubic polynomial | 44 s | 0.64204° | 0.2265 m/s | 1.59733° | 0.28710° | 0.13429° | |
Quintic polynomial | 55 s | 0.38279° | 0.1815 m/s | 0.70261° | 0.18120° | 0.14560° | |
25 m | T-shaped trajectory | 90.6 s | 0.46856° | 0.2756 m/s | 1.32222° | 0.68613° | 0.01970° |
S-shaped trajectory | 100.4 s | 0.25440° | 0.2490 m/s | 0.91319° | 0.05730° | 0.14250° | |
Cubic polynomial | 110 s | 0.26144° | 0.2270 m/s | 0.87451° | 0.28433° | 0.17904° | |
Quintic polynomial | 135 s | 0.18973° | 0.1850 m/s | 0.54503° | 0.02005° | 0.20475° | |
40 m | T-shaped trajectory | 136.1 s | 0.38615° | 0.2936 m/s | 1.39457° | 0.67396° | 0.21340° |
S-shaped trajectory | 145.9 s | 0.19217° | 0.2741 m/s | 0.91319° | 0.06804° | 0.20333° | |
Cubic polynomial | 176 s | 0.17479° | 0.2271 m/s | 0.70404° | 0.24208° | 0.14475° | |
Quintic polynomial | 216 s | 0.13636° | 0.1851 m/s | 0.47270° | 0.02936° | 0.19624° | |
55 m | T-shaped trajectory | 181.5 s | 0.32149° | 0.3028 m/s | 1.32723° | 0.63671° | 0.17438° |
S-shaped trajectory | 191.3 s | 0.15243° | 0.2875 m/s | 0.91319° | 0.00673° | 0.19844° | |
Cubic polynomial | 241 s | 0.13860° | 0.1386 m/s | 0.63600° | 0.17977° | 0.19865° | |
Quintic polynomial | 297 s | 0.10683° | 0.1068 m/s | 0.46911° | 0.00152° | 0.22573° |
S | Algorithms | A | B | C | D | E | F |
---|---|---|---|---|---|---|---|
10 m | T-shaped trajectory | 0.66521 | 0.01284 | 0.09106 | 0.00000 | 0.00000 | 0.09484 |
S-shaped trajectory | 0.00000 | 0.67289 | 0.70181 | 0.62271 | 0.65431 | 0.54714 | |
Cubic polynomial | 0.74666 | 0.00000 | 0.00000 | 0.15863 | 0.44096 | 0.83165 | |
Quintic polynomial | 0.00000 | 0.73963 | 0.70652 | 0.76620 | 0.61436 | 0.00000 | |
25 m | T-shaped trajectory | 0.72088 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.93970 |
T-shaped trajectory | 0.56177 | 0.52484 | 0.25048 | 0.41493 | 0.62867 | 0.31611 | |
S-shaped trajectory | 0.40590 | 0.50757 | 0.45764 | 0.45417 | 0.40169 | 0.13056 | |
Quintic polynomial | 0.00000 | 0.68331 | 0.85313 | 0.78840 | 0.66590 | 0.00000 | |
40 m | T-shaped trajectory | 0.70353 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
S-shaped trajectory | 0.61724 | 0.50995 | 0.15146 | 0.38561 | 0.61548 | 0.14089 | |
Cubic polynomial | 0.35221 | 0.55564 | 0.51653 | 0.55315 | 0.43870 | 0.96047 | |
Quintic polynomial | 0.00000 | 0.65667 | 0.84276 | 0.73847 | 0.65477 | 0.24008 | |
55 m | T-shaped trajectory | 0.69462 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.80050 |
S-shaped trajectory | 0.63568 | 0.51416 | 0.05974 | 0.35174 | 0.62712 | 0.42543 | |
Cubic polynomial | 0.33678 | 0.55624 | 0.64109 | 0.58723 | 0.45487 | 0.42215 | |
Quintic polynomial | 0.00000 | 0.65287 | 0.76514 | 0.72900 | 0.63231 | 0.00000 |
Displacement | Total Time | Trajectory Smoothness | Emergency Braking | Maximum Swing Angle | Residual Swing Angle | Anti-Interference |
---|---|---|---|---|---|---|
5 cm | 0.2225 | 0.2088 | 0.1630 | 0.1409 | 0.0969 | 0.1679 |
15 cm | 0.1416 | 0.1340 | 0.1814 | 0.1493 | 0.1401 | 0.2536 |
25 cm | 0.1414 | 0.1272 | 0.2007 | 0.1392 | 0.1309 | 0.2607 |
35 cm | 0.1544 | 0.1366 | 0.2593 | 0.1533 | 0.1394 | 0.1570 |
S | Algorithms | A | B | C | D | E | F |
---|---|---|---|---|---|---|---|
5 cm | T-shaped trajectory | 3.4 s | 0.110° | 2.207 cm/s | 0.29° | 0.03° | 0.14435° |
S-shaped trajectory | 4 s | 0.080° | 1.818 cm/s | 0.24° | 0.01° | 0.13813° | |
Cubic polynomial | 3.3 s | 0.120° | 2.265 cm/s | 0.27° | 0.06° | 0.13429° | |
Quintic polynomial | 4 s | 0.078° | 1.815 cm/s | 0.21° | 0.04° | 0.14560° | |
15 cm | T-shaped trajectory | 6.3 s | 0.101° | 2.756 cm/s | 0.26° | 0.1° | 0.01970° |
S-shaped trajectory | 7.6 s | 0.064° | 2.490 cm/s | 0.31° | 0.02° | 0.14250° | |
Cubic polynomial | 9.4 s | 0.065° | 2.270 cm/s | 0.28° | 0.07° | 0.17904° | |
Quintic polynomial | 12.5 s | 0.054° | 1.850 cm/s | 0.18° | 0.015° | 0.20475° | |
25 cm | T-shaped trajectory | 9.4 s | 0.105° | 2.936 cm/s | 0.26° | 0.16° | 0.21340° |
S-shaped trajectory | 13.9 s | 0.030° | 2.741 cm/s | 0.19° | 0.04° | 0.20333° | |
Cubic polynomial | 15.4 s | 0.020° | 2.271 cm/s | 0.15° | 0.01° | 0.14475° | |
Quintic polynomial | 19.3 s | 0.021° | 1.851 cm/s | 0.12° | 0.015° | 0.19624° | |
35 cm | T-shaped trajectory | 11.8 s | 0.137° | 3.028 cm/s | 0.41° | 0.4° | 0.17438° |
S-shaped trajectory | 15.6 s | 0.043° | 2.2875 cm/s | 0.23° | 0.03° | 0.19844° | |
Cubic polynomial | 18.3 s | 0.038° | 1.386 cm/s | 0.18° | 0.15° | 0.19865° | |
Quintic polynomial | 22 s | 0.030° | 1.068 cm/s | 0.14° | 0.001° | 0.22573° |
Displacement | Total Time | Trajectory Smoothness | Emergency Braking | Maximum Swing Angle | Residual Swing Angle | Anti-Interference |
---|---|---|---|---|---|---|
5 cm | 0.2378 | 0.1466 | 0.1730 | 0.1422 | 0.1219 | 0.1786 |
15 cm | 0.1340 | 0.1216 | 0.1660 | 0.1936 | 0.1528 | 0.2320 |
25 cm | 0.1559 | 0.1238 | 0.1982 | 0.1391 | 0.1251 | 0.2579 |
35 cm | 0.1700 | 0.1342 | 0.2575 | 0.1397 | 0.1423 | 0.1564 |
Displacement | Total Time | Trajectory Smoothness | Emergency Braking | Maximum Swing Angle | Residual Swing Angle | Anti-Interference |
---|---|---|---|---|---|---|
5 cm | 0.2220 | 0.2003 | 0.1615 | 0.1483 | 0.1012 | 0.1667 |
15 cm | 0.1441 | 0.1360 | 0.1785 | 0.1477 | 0.1440 | 0.2496 |
25 cm | 0.1504 | 0.1193 | 0.1913 | 0.1265 | 0.1636 | 0.2488 |
35 cm | 0.1761 | 0.1550 | 0.1720 | 0.1548 | 0.1802 | 0.1620 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Xu, M.; Wu, G.; Dong, S.; Liu, X. Multi-Trajectory Planning Control Strategy for Hydropower Plant Bridge Crane Based on Evaluation Algorithm. Electronics 2024, 13, 3770. https://doi.org/10.3390/electronics13183770
Chen T, Xu M, Wu G, Dong S, Liu X. Multi-Trajectory Planning Control Strategy for Hydropower Plant Bridge Crane Based on Evaluation Algorithm. Electronics. 2024; 13(18):3770. https://doi.org/10.3390/electronics13183770
Chicago/Turabian StyleChen, Tiehua, Ming Xu, Guangxin Wu, Shihao Dong, and Xinze Liu. 2024. "Multi-Trajectory Planning Control Strategy for Hydropower Plant Bridge Crane Based on Evaluation Algorithm" Electronics 13, no. 18: 3770. https://doi.org/10.3390/electronics13183770
APA StyleChen, T., Xu, M., Wu, G., Dong, S., & Liu, X. (2024). Multi-Trajectory Planning Control Strategy for Hydropower Plant Bridge Crane Based on Evaluation Algorithm. Electronics, 13(18), 3770. https://doi.org/10.3390/electronics13183770