Power Converter Topologies for Heat Pumps Powered by Renewable Energy Sources: A Literature Review
Abstract
:1. Introduction
- AC-DC converters—also called rectifiers—which are used in household appliances, cellular phones, and laptops.
- DC-AC converters, which are used in grid-connected RES such as solar PV, WT, and motor drives.
- DC-DC converters, which convert DC input voltage from one level to another. They are used in ESS to maximize the energy harvested by RES such as PVs or WTs. Some other applications include electric vehicles.
- AC-AC converters, which convert AC voltage at one frequency to AC voltage at another frequency or alter the amplitude of AC voltage.
2. Overview of Previous RE-Powered Heat Pumps Applications
3. Converter Topologies for DC-Powered HPs
3.1. Unidirectional DC-DC Converter Topologies on the PV Side or DC-Powered HP Side
3.2. Bidirectional DC-DC Converter Topologies on the ESS Side
4. Converter Topologies for AC-Powered HPs
4.1. AC-DC Topologies on WT Side
4.2. DC-AC Topologies on AC-Powered HP Side
MLI Topology | Advantages | Disadvantages |
---|---|---|
NPC [154,155,156] | Can be extended to higher power rates and more output voltage levels by adding additional power switches and clamping diodes (up to three levels only) | Technical challenges in high-power applications such as voltage unbalances and reverse recovery stress. |
CHB [116] | For the same number of levels, cascaded-H-bridge converters are highly modular and reliable, requiring fewer components | Each module requires different sources of DC voltage or capacitors. The large number of capacitors necessitates a more complex controller. |
FC [156,157] |
| Higher number of capacitors. |
- Scalar or sinusoidal PWM [168]: It compares the carrier signal to the reference signal. If the reference signal is higher, the output voltage is set to its maximum. Otherwise, the output voltage is set to its minimum. Thus, it generates a modulated voltage. This control strategy can be used with all types of converters (rectifiers, inverters, and choppers). In contrast, vector PWM is specifically applicable only to DC-AC and AC-DC converters. In addition to conventional PWM techniques, a digital logic-based dead zone compensation method was proposed in [169] to improve the performance of H-bridge converters. This method adjusts the PWM signals based on the current polarity to mitigate total harmonic distortions caused by dead zones, enhancing AC output quality and ensuring compatibility with various control and modulation strategies. Its independence from specific control strategies enables straightforward adaptation to other converter types, such as NPC converters.
- Vector PWM [170]: This method involves using a vector-based approach to control the output. Instead of comparing signals directly, it transforms the reference signal into a two-dimensional vector using a mathematical transformation (like Park’s transformation). The PWM process then modulates the output based on this vector representation. This allows for more precise control of the output voltage in systems with multiple phases or complex waveforms.
- Proportional-integral, proportional-derivative, or proportional-integral-derivative control: These controllers are commonly used in systems where stability is crucial, because of their simplicity and effectiveness, particularly in steady-state conditions [173].
- H-Infinity control: This approach is powerful for designing robust controllers capable of maintaining acceptable performance in uncertain environments. It is particularly suited for systems where reliability and robustness are essential [176].
- Fuzzy control: This method uses fuzzy logic to manage uncertainty and imprecision in control systems. It stands out in applications where mathematical models are difficult to establish [177].
5. Conclusions and Future Research
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Alternating Current |
ASHP | Air-Source Heat Pump |
ANPC | Active Neutral Point Clamped |
BDC | Bidirectional Converter |
CHB | Cascaded H-Bridge |
DAB | Dual Active Bridge |
DC | Direct Current |
DHB | Dual Half-Bridge |
ESS | Energy Storage Systems |
FC | Flying Capacitor |
GSHP | Ground-Source Heat Pump |
HP | Heat Pump |
MLI | Multilevel Inverter |
MPC | Model Predictive Control |
NPC | Neutral Point Clamped |
PV | Photovoltaic |
PWM | Pulse-Width Modulation |
RC | Resonant Converter |
RE | Renewable Energy |
RES | Renewable Energy Sources |
VMC | Voltage Multiplier Cell |
VSC | Voltage-Source Converter |
WSHP | Water-Source Heat Pump |
WT | Wind Turbine |
ZCS | Zero Current Switching |
ZVS | Zero Voltage Switching |
References
- Eurostat Heating and Cooling from Renewables Gradually Increasing—Products Eurostat News—Eurostat. Available online: https://ec.europa.eu/eurostat/en/web/products-eurostat-news/w/ddn-20230203-1 (accessed on 19 February 2024).
- International Energy Agency (IEA). Tracking Heating. Available online: https://www.iea.org/energy-system/buildings/heating#tracking (accessed on 27 February 2024).
- Energy Education Heat Pump. Available online: https://energyeducation.ca/encyclopedia/Heat_pump#:~:text=The%20heating%20cycle%20of%20a,air%2C%20turning%20into%20a%20gas (accessed on 24 January 2024).
- Sadeghi, H.; Ijaz, A.; Singh, R.M. Current Status of Heat Pumps in Norway and Analysis of Their Performance and Payback Time. Sustain. Energy Technol. Assess. 2022, 54, 102829. [Google Scholar] [CrossRef]
- Gilani, H.A.; Hoseinzadeh, S.; Karimi, H.; Karimi, A.; Hassanzadeh, A.; Garcia, D.A. Performance Analysis of Integrated Solar Heat Pump VRF System for the Low Energy Building in Mediterranean Island. Renew. Energy 2021, 174, 1006–1019. [Google Scholar] [CrossRef]
- Bloess, A.; Schill, W.P.; Zerrahn, A. Power-to-Heat for Renewable Energy Integration: A Review of Technologies, Modeling Approaches, and Flexibility Potentials. Appl. Energy 2018, 212, 1611–1626. [Google Scholar] [CrossRef]
- Peskova, M. Data-Driven Models for Estimating Heat Pump Power. Master’s Thesis, Department of Energy Technology, KTH Royal Institute of Technology, Industrial Engineering and Management, Stockholm, Sweden, 2023. [Google Scholar]
- Lorenzo, C.; Narvarte, L.; Almeida, R.H.; Cristóbal, A.B. Technical Evaluation of a Stand-Alone Photovoltaic Heat Pump System without Batteries for Cooling Applications. Sol. Energy 2020, 206, 92–105. [Google Scholar] [CrossRef]
- Fischer, D.; Madani, H. On Heat Pumps in Smart Grids: A Review. Renew. Sustain. Energy Rev. 2017, 70, 342–357. [Google Scholar] [CrossRef]
- Baraskar, S.; Günther, D.; Wapler, J.; Lämmle, M. Analysis of the Performance and Operation of a Photovoltaic-Battery Heat Pump System Based on Field Measurement Data. Sol. Energy Adv. 2023, 4, 100047. [Google Scholar] [CrossRef]
- Lawan, M.M.G.; Raharijaona, J.; Camara, M.B.; Dakyo, B. Power Control for Decentralized Energy Production System Based on the Renewable Energies—Using Battery to Compensate the Wind/Load/PV Power Fluctuations. In Proceedings of the 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, CA, USA, 5–8 November 2017; pp. 1132–1138. [Google Scholar] [CrossRef]
- Boroyevich, D.; Cvetkovic, I.; Burgos, R.; Dong, D. Intergrid: A Future Electronic Energy Network? IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 127–138. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Z.; Zhang, B.; Halang, W.A. Power Electronics Converters: Past, Present and Future. Renew. Sustain. Energy Rev. 2018, 81, 2028–2044. [Google Scholar] [CrossRef]
- Justo, J.J.; Mwasilu, F.; Lee, J.; Jung, J.W. AC-Microgrids versus DC-Microgrids with Distributed Energy Resources: A Review. Renew. Sustain. Energy Rev. 2013, 24, 387–405. [Google Scholar] [CrossRef]
- Henning, H.M.; Palzer, A. A Comprehensive Model for the German Electricity and Heat Sector in a Future Energy System with a Dominant Contribution from Renewable Energy Technologies—Part I: Methodology. Renew. Sustain. Energy Rev. 2014, 30, 1003–1018. [Google Scholar] [CrossRef]
- Hannan, M.A.; Lipu, M.S.H.; Ker, P.J.; Begum, R.A.; Agelidis, V.G.; Blaabjerg, F. Power Electronics Contribution to Renewable Energy Conversion Addressing Emission Reduction: Applications, Issues, and Recommendations. Appl. Energy 2019, 251, 113404. [Google Scholar] [CrossRef]
- Zhang, N.; Sutanto, D.; Muttaqi, K.M. A Review of Topologies of Three-Port DC-DC Converters for the Integration of Renewable Energy and Energy Storage System. Renew. Sustain. Energy Rev. 2016, 56, 388–401. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Rahim, N.A.; Selvaraj, J.a/l. Recent Progress and Development on Power DC-DC Converter Topology, Control, Design and Applications: A Review. Renew. Sustain. Energy Rev. 2018, 81, 205–230. [Google Scholar] [CrossRef]
- Roy, P.; He, J.; Zhao, T.; Singh, Y.V. Recent Advances of Wind-Solar Hybrid Renewable Energy Systems for Power Generation: A Review. IEEE Open J. Ind. Electron. Soc. 2022, 3, 81–104. [Google Scholar] [CrossRef]
- Toure, M.L.; Camara, M.B.; Payman, A.; Dakyo, B. African Renewable Energy Potentialities Review for Local Weak Grids Reinforcement Study. In Proceedings of the 2023 11th International Conference on Smart Grid (icSmartGrid), Paris, France, 4–7 June 2023; pp. 388–397. [Google Scholar] [CrossRef]
- Poulet, P.; Outbib, R. Energy Production for Dwellings by Using Hybrid Systems Based on Heat Pump Variable Input Power. Appl. Energy 2015, 147, 413–429. [Google Scholar] [CrossRef]
- Fischer, D.; Rautenberg, F.; Wirtz, T.; Wille-Haussmann, B.; Madani, H. Smart Meter Enabled Control for Variable Speed Heat Pumps to Increase PV Self-Consumption. Refrig. Sci. Technol. 2015, 24, 4049–4056. [Google Scholar] [CrossRef]
- Laine, H.S.; Salpakari, J.; Looney, E.E.; Savin, H.; Peters, I.M.; Buonassisi, T. Meeting Global Cooling Demand with Photovoltaics during the 21st Century. Energy Environ. Sci. 2019, 12, 2706–2716. [Google Scholar] [CrossRef]
- Rieck, J.; Taube, L.; Behrendt, F. Feasibility Analysis of a Heat Pump Powered by Wind Turbines and PV- Applications for Detached Houses in Germany. Renew. Energy 2020, 162, 1104–1112. [Google Scholar] [CrossRef]
- Bojić, M.; Nikolić, N.; Nikolić, D.; Skerlić, J.; Miletić, I. Toward a Positive-Net-Energy Residential Building in Serbian Conditions. Appl. Energy 2011, 88, 2407–2419. [Google Scholar] [CrossRef]
- Roselli, C.; Sasso, M.; Tariello, F. Dynamic Simulation of a Solar Electric Driven Heat Pump for an Office Building Located in Southern Italy. Int. J. Heat Technol. 2016, 34, S496–S504. [Google Scholar] [CrossRef]
- Klokov, A.V.; Tutunin, A.S.; Sharaborova, E.S.; Korshunov, A.A.; Loktionov, E.Y. Inverter Heat Pumps as a Variable Load for Off-Grid Solar-Powered Systems. Energies 2023, 16, 5987. [Google Scholar] [CrossRef]
- Izquierdo, M.; De Agustín, P.; Martín, E. A Micro Photovoltaic-Heat Pump System for House Heating by Radiant Floor: Some Experimental Results. Energy Procedia 2014, 48, 865–875. [Google Scholar] [CrossRef]
- Franco, A.; Fantozzi, F. Experimental Analysis of a Self-Consumption Strategy for Residential Building: The Integration of PV System and Geothermal Heat Pump. Renew. Energy 2016, 86, 1075–1085. [Google Scholar] [CrossRef]
- Aguilar, F.; Crespí-Llorens, D.; Quiles, P.V. Techno-Economic Analysis of an Air Conditioning Heat Pump Powered by Photovoltaic Panels and the Grid. Sol. Energy 2019, 180, 169–179. [Google Scholar] [CrossRef]
- Aguilar, F.J.; Aledo, S.; Quiles, P.V. Experimental Analysis of an Air Conditioner Powered by Photovoltaic Energy and Supported by the Grid. Appl. Therm. Eng. 2017, 123, 486–497. [Google Scholar] [CrossRef]
- Charalambous, C.; Heracleous, C.; Michael, A.; Efthymiou, V. Hybrid AC-DC Distribution System for Building Integrated Photovoltaics and Energy Storage Solutions for Heating-Cooling Purposes. A Case Study of a Historic Building in Cyprus. Renew. Energy 2023, 216, 119032. [Google Scholar] [CrossRef]
- Fapi, C.B.N.; Touré, M.L.; Camara, M.-B.; Dakyo, B. High Voltage Gain DC-DC Converter Based Maximum Power Tracking from Photovoltaic Systems for Heat-Pump Applications. In Proceedings of the 2024 12th International Conference on Smart Grid (icSmartGrid), Shanghai, China, 25–27 October 2024; pp. 493–498. [Google Scholar]
- Han, S.; Li, X.; Zhao, W.; Wang, L.; Liang, A.; Zeng, S. Simulation Study of the Control Strategy of a DC Inverter Heat Pump Using a DC Distribution Network. Energy Eng. J. Assoc. Energy Eng. 2023, 120, 1421–1444. [Google Scholar] [CrossRef]
- Ekren, O.; Celik, S.; Noble, B.; Krauss, R. Performance Evaluation of a Variable Speed DC Compressor. Int. J. Refrig. 2013, 36, 745–757. [Google Scholar] [CrossRef]
- Vossos, V.; Garbesi, K.; Shen, H. Energy Savings from Direct-DC in U.S. Residential Buildings. Energy Build. 2014, 68, 223–231. [Google Scholar] [CrossRef]
- Zaid, M.; Malick, I.H.; Ashraf, I.; Tariq, M.; Alamri, B.; Rodrigues, E.M.G. A Non-isolated Transformerless High-Gain DC–DC Converter for Renewable Energy Applications. Electronics 2022, 11, 2014. [Google Scholar] [CrossRef]
- Changchien, S.K.; Liang, T.J.; Chen, J.F.; Yang, L.S. Novel High Step-up DCDC Converter for Fuel Cell Energy Conversion System. IEEE Trans. Ind. Electron. 2010, 57, 2007–2017. [Google Scholar] [CrossRef]
- Forouzesh, M.; Siwakoti, Y.P.; Gorji, S.A.; Blaabjerg, F.; Lehman, B. Step-Up DC-DC Converters: A Comprehensive Review of Voltage-Boosting Techniques, Topologies, and Applications. IEEE Trans. Power Electron. 2017, 32, 9143–9178. [Google Scholar] [CrossRef]
- Tomaszuk, A.; Krupa, A. High Efficiency High Step-up DC/DC Converters—A Review. Bull. Pol. Acad. Sci. Tech. Sci. 2011, 59, 475–483. [Google Scholar] [CrossRef]
- Saravanan, S.; Ramesh Babu, N. Analysis and Implementation of High Step-up DC-DC Converter for PV Based Grid Application. Appl. Energy 2017, 190, 64–72. [Google Scholar] [CrossRef]
- Samiullah, M.; Siddique, M.D.; Iqbal, A.; Maroti, P.K.; Banerjee, S. A Non-Isolated Symmetrical Design of Voltage Lift Switched-Inductor Boost Converter with Higher Gain and Low Voltage Stress across Switches. IET Power Electron. 2022. [Google Scholar] [CrossRef]
- Ahmed, H.Y.; Abdel-rahim, O.; Ali, Z.M. New High Gain Transformerless DC/DC Boost System. Electronics 2022, 11, 734. [Google Scholar] [CrossRef]
- Matsui, K.; Yamamoto, I.; Kishi, T.; Hasegawa, M.; Mori, H.; Ueda, F. A Comparison of Various Buck-Boost Converters and Their Application to PFC. IECON Proc. (Ind. Electron. Conf.) 2002, 1, 30–36. [Google Scholar] [CrossRef]
- Marjani, J.; Imani, A.; Hekmati, A.; Afjei, E. A New Dual Output DC-DC Converter Based on SEPIC and Cuk Converters. In Proceedings of the 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Capri, Italy, 22–24 June 2016; pp. 946–950. [Google Scholar] [CrossRef]
- Banaei, M.R.; Bonab, H.A.F. A High Efficiency Non-isolated Buck-Boost Converter Based on ZETA Converter. IEEE Trans. Ind. Electron. 2020, 67, 1991–1998. [Google Scholar] [CrossRef]
- Newlin, D.J.S.; Ramalakshmi, R.; Rajasekaran, S. A Performance Comparison of Interleaved Boost Converter and Conventional Boost Converter for Renewable Energy Application. In Proceedings of the 2013 International Conference on Green High-Performance Computing (ICGHPC), Nagercoil, India, 14–15 March 2013. [Google Scholar] [CrossRef]
- Soltani, M.; Mostaan, A.; Siwakoti, Y.P.; Davari, P.; Blaabjerg, F. Family of Step-up DC/DC Converters with Fast Dynamic Response for Low Power Applications. IET Power Electron. 2016, 9, 2665–2673. [Google Scholar] [CrossRef]
- Zhao, Q.; Tao, F.; Lee, F.C.; Xu, P.; Wei, J. A Simple and Effective Method to Alleviate the Rectifier Reverse-Recovery Problem in Continuous-Current-Mode Boost Converters. IEEE Trans. Power Electron. 2001, 16, 649–658. [Google Scholar] [CrossRef]
- Chen, J.; Maksimović, D.; Erickson, R.W. Analysis and Design of a Low-Stress Buck-Boost Converter in Universal-Input PFC Applications. IEEE Trans. Power Electron. 2006, 21, 320–329. [Google Scholar] [CrossRef]
- Abusorrah, A.; Al-Hindawi, M.M.; Al-Turki, Y.; Mandal, K.; Giaouris, D.; Banerjee, S.; Voutetakis, S.; Papadopoulou, S. Stability of a Boost Converter Fed from Photovoltaic Source. Sol. Energy 2013, 98, 458–471. [Google Scholar] [CrossRef]
- dos Reis Barbosa, L.; Sousa Vilefort, L.; Vincenzi Romualdo da Silva, F.; Antônio Alves Coelho, E.; Carlos Gomes de Freitas, L.; Carlos de Freitas, L.; Batista Vieira Júnior, J. Analysis of A Soft-Single-Switched Quadratic Boost Converter. Eletrônica De Potência 2013, 18, 1047–1054. [Google Scholar] [CrossRef]
- Meshael, H.; Elkhateb, A.; Best, R. Topologies and Design Characteristics of Isolated High Step-Up DC–DC Converters for Photovoltaic Systems. Electronics 2023, 12, 3913. [Google Scholar] [CrossRef]
- Ren, B.; Wang, D.; Mao, C.; Qiu, J.; Zhao, J. Analysis of Full Bridge DC-DC Converter in Power System. In Proceedings of the 2011 4th International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT), Weihai, China, 6–9 July 2011; pp. 1242–1245. [Google Scholar] [CrossRef]
- Farajdadian, S.; Hajizadeh, A.; Soltani, M. Recent Developments of Multiport DC/DC Converter Topologies, Control Strategies, and Applications: A Comparative Review and Analysis. Energy Rep. 2024, 11, 1019–1052. [Google Scholar] [CrossRef]
- Hashemzadeh, S.M.; Hosseini, S.H.; Babaei, E.; Sabahi, M. Design and Modelling of a New Three Winding Coupled Inductor Based High Step-up DC–DC Converter for Renewable Energy Applications. IET Power Electron. 2022, 15, 1322–1339. [Google Scholar] [CrossRef]
- Talebi, P.; Packnezhad, M.; Farzanehfard, H. Single-Switch High Step-Up Y-Source-Boost Converter for Renewable Energy Applications. IEEE Trans. Ind. Electron. 2024, 71, 1–8. [Google Scholar] [CrossRef]
- Siwakoti, Y.P.; Loh, P.C.; Blaabjerg, F.; Andreasen, S.J.; Town, G.E. Y-Source Boost DC/DC Converter for Distributed Generation. IEEE Trans. Ind. Electron. 2015, 62, 1059–1069. [Google Scholar] [CrossRef]
- Ji, Y.; Liu, H.; Feng, Y.; Wu, F.; Wheeler, P. High Step-Up Y-Source Coupled-Inductor Impedance Network Boost DC-DC Converters with Common Ground and Continuous Input Current. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 3174–3183. [Google Scholar] [CrossRef]
- Lee, S.W.; Do, H.L. Quadratic Boost DC-DC Converter with High Voltage Gain and Reduced Voltage Stresses. IEEE Trans. Power Electron. 2019, 34, 2397–2404. [Google Scholar] [CrossRef]
- Jalilzadeh, T.; Rostami, N.; Babaei, E.; Maalandish, M. Non-isolated Topology for High Step-Up DC-DC Converters. IEEE J. Emerg. Sel. Top. Power Electron. 2023, 11, 1154–1168. [Google Scholar] [CrossRef]
- Forouzesh, M.; Shen, Y.; Yari, K.; Siwakoti, Y.P.; Blaabjerg, F. High-Efficiency High Step-Up DC-DC Converter with Dual Coupled Inductors for Grid-Connected Photovoltaic Systems. IEEE Trans. Power Electron. 2018, 33, 5967–5982. [Google Scholar] [CrossRef]
- Hashemzadeh, S.M.; Hosseini, S.H.; Babaei, E.; Sabahi, M. A Soft Switched High Step-up DC-DC Converter Based on VMC and Coupled Inductor for Photovoltaic Energy Applications. IET Renew. Power Gener. 2023, 17, 1583–1596. [Google Scholar] [CrossRef]
- Rao, C.; Hajjiah, A.; El-Meligy, M.A.; Sharaf, M.; Soliman, A.T.; Mohamed, M.A. A Novel High-Gain Soft-Switching DC-DC Converter with Improved PO MPPT for Photovoltaic Applications. IEEE Access 2021, 9, 58790–58806. [Google Scholar] [CrossRef]
- Yao, Q.; Zeng, Y.; Jia, Q. A Novel Non-Isolated Cubic DC-DC Converter with High Voltage Gain for Renewable Energy Power Generation System. Energy Eng. J. Assoc. Energy Eng. 2024, 121, 221–241. [Google Scholar] [CrossRef]
- Chen, W.; Wu, X.; Yao, L.; Jiang, W.; Hu, R. A Step-up Resonant Converter for Grid-Connected Renewable Energy Sources. IEEE Trans. Power Electron. 2015, 30, 3017–3029. [Google Scholar] [CrossRef]
- Abdel-Rahim, O.; Wang, H. A New High Gain DC-DC Converter with Model-Predictive-Control Based MPPT Technique for Photovoltaic Systems. CPSS Trans. Power Electron. Appl. 2020, 5, 191–200. [Google Scholar] [CrossRef]
- Subhani, N.; May, Z.; Alam, M.K.; Khan, I.; Hossain, M.A.; Mamun, S. An Improved Non-Isolated Quadratic DC-DC Boost Converter with Ultra High Gain Ability. IEEE Access 2023, 11, 11350–11363. [Google Scholar] [CrossRef]
- Vakacharla, V.R.; Rathore, A.K. Isolated Soft Switching Current Fed LCC-T Resonant DC-DC Converter for PV/Fuel Cell Applications. IEEE Trans. Ind. Electron. 2019, 66, 6947–6958. [Google Scholar] [CrossRef]
- Akhlaghi, Z.; Karimi, A.; Adib, E. High Step-up DC–DC Converter with Low Conduction Losses and Reduced Switching Losses. IET Renew. Power Gener. 2024, 18, 654–662. [Google Scholar] [CrossRef]
- Lee, S.W.; Do, H.L. Isolated High Step-Up Dual-Flyback DC–DC Converter with a Resonant Voltage Multiplier. Electr. Power Compon. Syst. 2020, 48, 871–880. [Google Scholar] [CrossRef]
- Hasan, R.; Hassan, W.; Xiao, W. A High Gain Flyback DC-DC Converter for PV Applications. In Proceedings of the 2020 IEEE Region 10 Conference (TENCON), Osaka, Japan, 16–19 November 2020; pp. 522–526. [Google Scholar] [CrossRef]
- Konar, S.; Saha, S.S. Efficient Energy Recovery and Boosting the Voltage Gain of a Soft-Switched Flyback Converter. In Proceedings of the 2020 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, 16–19 December 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Jiao, Y.; Li, B.; Ding, L.; Suo, Z.; Xu, D. DC/DC Converter with High Current Capability for All DC Renewable System. IEEE Trans. Power Electron. 2024, 39, 1–5. [Google Scholar] [CrossRef]
- Shang, M.; Wang, H.; Cao, Q. Reconfigurable LLC Topology with Squeezed Frequency Span for High-Voltage Bus-Based Photovoltaic Systems. IEEE Trans. Power Electron. 2018, 33, 3688–3692. [Google Scholar] [CrossRef]
- Sovacool, B.K. The Intermittency of Wind, Solar, and Renewable Electricity Generators: Technical Barrier or Rhetorical Excuse? Util. Policy 2009, 17, 288–296. [Google Scholar] [CrossRef]
- Farhadi, M.; Mohammed, O. Energy Storage Technologies for High-Power Applications. IEEE Trans. Ind. Appl. 2016, 52, 1953–1962. [Google Scholar] [CrossRef]
- Alatai, S.; Salem, M.; Ishak, D.; Das, H.S.; Nazari, M.A.; Bughneda, A.; Kamarol, M. A Review on State-of-the-Art Power Converters: Bidirectional, Resonant, Multilevel Converters and Their Derivatives. Appl. Sci. 2021, 11, 10172. [Google Scholar] [CrossRef]
- Reddy, B.M.; Samuel, P. Analysis of Secluded Bi-Direction DC/DC Converters for the Performance Enhancement of Photo-Voltaic System and Energy Storage System. In Proceedings of the 2016 IEEE 7th Power India International Conference (PIICON), Bikaner, India, 25–27 November 2016. [Google Scholar] [CrossRef]
- Mohammadi, M.R.; Farzanehfard, H. A New Bidirectional ZVS-PWM Cuk Converter with Active Clamp. In Proceedings of the 2011 19th Iranian Conference on Electrical Engineering, Tehran, Iran, 17–19 May 2011. [Google Scholar]
- Meher, J.; Gosh, A. Comparative Study of DC/DC Bidirectional SEPIC Converter with Different Controllers. In Proceedings of the 2018 IEEE 8th Power India International Conference (PIICON), Kurukshetra, India, 10–12 December 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, Y.; Gao, Y.; Zhou, L.; Sumner, M. A Switched-Capacitor Bidirectional DC-DC Converter with Wide Voltage Gain Range for Electric Vehicles with Hybrid Energy Sources. IEEE Trans. Power Electron. 2018, 33, 9459–9469. [Google Scholar] [CrossRef]
- Wang, F.; Luo, Y.; Li, H.; Xu, X. Switching Characteristics Optimization of Two-Phase Interleaved Bidirectional DC/DC for Electric Vehicles. Energies 2019, 12, 378. [Google Scholar] [CrossRef]
- He, P.; Khaligh, A. Comprehensive Analyses and Comparison of 1 KW Isolated DC-DC Converters for Bidirectional EV Charging Systems. IEEE Trans. Transp. Electrif. 2017, 3, 147–156. [Google Scholar] [CrossRef]
- De Doncker, R.W.A.A.; Divan, D.M.; Kheraluwala, M.H. A Three-Phase Soft-Switched High-Power-Density DC/DC Converter for High-Power Applications. IEEE Trans. Ind. Appl. 1991, 27, 63–73. [Google Scholar] [CrossRef]
- Higa, H.; Takuma, S.; Orikawa, K.; Itoh, J.I. Dual Active Bridge DC-DC Converter Using Both Full and Half Bridge Topologies to Achieve High Efficiency for Wide Load. In Proceedings of the 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 20–24 September 2015; pp. 6344–6351. [Google Scholar] [CrossRef]
- Babokany, A.S.; Jabbari, M.; Shahgholian, G.; Mahdavian, M. A Review of Bidirectional Dual Active Bridge Converter. In Proceedings of the 2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Phetchaburi, Thailand, 16–18 May 2012; Volume 2, pp. 1–4. [Google Scholar] [CrossRef]
- Chub, A.; Vinnikov, D.; Kosenko, R.; Liivik, E.; Galkin, I. Bidirectional DC-DC Converter for Modular Residential Battery Energy Storage Systems. IEEE Trans. Ind. Electron. 2020, 67, 1944–1955. [Google Scholar] [CrossRef]
- Xiong, H.; Song, D.; Shi, F.; Wei, Y.; Jinzhen, L. Novel Voltage Equalization Circuit of the Lithium Battery Pack Based on Bidirectional Flyback Converter. IET Power Electron. 2020, 13, 2194–2200. [Google Scholar] [CrossRef]
- Gorji, S.A.; Ektesabi, M.; Zheng, J. Isolated Switched-Boost Push-Pull DC-DC Converter for Step-up Applications. Electron. Lett. 2017, 53, 177–179. [Google Scholar] [CrossRef]
- Monteiro, J.; Pires, V.F.; Foito, D.; Cordeiro, A.; Silva, J.F.; Pinto, S. A Buck-Boost Converter with Extended Duty-Cycle Range in the Buck Voltage Region for Renewable Energy Sources. Electronics 2023, 12, 584. [Google Scholar] [CrossRef]
- Mukherjee, S.; Kumar, A.; Chakraborty, S. Comparison of DAB and LLC DC-DC Converters in High-Step-Down Fixed-Conversion-Ratio (DCX) Applications. IEEE Trans. Power Electron. 2021, 36, 4383–4398. [Google Scholar] [CrossRef]
- Hui, S.Y.R.; Chung, H.S.H. Resonant and Soft-Switching Converters. In Power Electronics Handbook; Elsevier: Amsterdam, The Netherlands, 2011; pp. 409–453. [Google Scholar]
- Dobi, A.H.M.; Sahid, M.R.; Sutikno, T. Overview of Soft-Switching DC-DC Converters. Int. J. Power Electron. Drive Syst. 2018, 9, 2006–2018. [Google Scholar] [CrossRef]
- Arazi, M.; Payman, A.; Camara, M.B.; Dakyo, B. Study of Different Topologies of DC-DC Resonant Converters for Renewable Energy Applications. In Proceedings of the 2018 Thirteenth International Conference on Ecological Vehicles and Renewable Energies (EVER), Monte Carlo, Monaco, 10–12 April 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Moorthy, R.S.K.; Rathore, A.K. Zero Current Switching Current-Fed Parallel Resonant Push-Pull (CFPRPP) Converter. In Proceedings of the 2014 International Power Electronics Conference (IPEC-Hiroshima 2014-ECCE ASIA), Hiroshima, Japan, 18–21 May 2014; pp. 3616–3623. [Google Scholar]
- Alam, M.A.; Minai, A.F.; Bakhsh, F.I. Isolated Bidirectional DC-DC Converter: A Topological Review. e-Prime-Adv. Electr. Eng. Electron. Energy 2024, 8, 100594. [Google Scholar] [CrossRef]
- Mudiyanselage, G.A.; Keshmiri, N.; Emadi, A. A Review of DC-DC Resonant Converter Topologies and Control Techniques for Electric Vehicle Applications. IEEE Open J. Power Electron. 2023, 4, 945–964. [Google Scholar] [CrossRef]
- Kim, E.-S.; Oh, J.-S. High-Efficiency Bidirectional LLC Resonant Converter with Primary Auxiliary Windings. Energies 2019, 12, 4692. [Google Scholar] [CrossRef]
- Hua, C.C.; Deng, Y.L. A Novel Dual-Bridge LLC Resonant Converter with Wide Range of Low Input Voltage. Energy Procedia 2019, 156, 361–365. [Google Scholar] [CrossRef]
- Jiang, T.; Zhang, J.; Wu, X.; Sheng, K.; Wang, Y. A Bidirectional Three-Level LLC Resonant Converter with PWAM Control. IEEE Trans. Power Electron. 2016, 31, 2213–2225. [Google Scholar] [CrossRef]
- Arazi, M.; Payman, A.; Camara, M.B.; Dakyo, B. Bidirectional Interface Resonant Converter for Wide Voltage Range Storage Applications. Sustainability 2022, 14, 377. [Google Scholar] [CrossRef]
- Xuan, Y.; Yang, X.; Chen, W.; Liu, T.; Hao, X. A Novel Three-Level CLLC Resonant DC-DC Converter for Bidirectional EV Charger in DC Microgrids. IEEE Trans. Ind. Electron. 2021, 68, 2334–2344. [Google Scholar] [CrossRef]
- Jiao, Y.; Jovanovic, M.M. Topology Evaluation and Comparison for Isolated Multilevel DC/DC Converter for Power Cell in Solid State Transformer. In Proceedings of the 2019 IEEE Applied Power Electronics Conference and Exposition (APEC), Anaheim, CA, USA, 17–21 March 2019; pp. 802–809. [Google Scholar] [CrossRef]
- Waffler, S.; Kolar, J.W. A Novel Low-Loss Modulation Strategy for High-Power Bi-Directional Buck+Boost Converters. IEEE Trans. Power Electron. 2007, 24, 889–894. [Google Scholar] [CrossRef]
- Ahamed, M.E.; Senthilkumar, S. Review of Bidirectional DC-DC Converters. Int. J. Adv. Res. Innov. 2017, 5, 33–42. [Google Scholar] [CrossRef]
- Song, M.S.; Son, Y.D.; Lee, K.H. Non-Isolated Bidirectional Soft-Switching SEPIC/ZETA Converter with Reduced Ripple Currents. J. Power Electron. 2014, 14, 649–660. [Google Scholar] [CrossRef]
- Institute of Electrical and Electronics Engineers. 2016 2nd International Young Scientists Forum on Applied Physics and Engineering, YSF 2016—Forum Proceedings. In Proceedings of the 2016 II International Young Scientists Forum on Applied Physics and Engineering, Kharkiv, Ukraine, 10–14 October 2016; pp. 22–28. [Google Scholar]
- Li, C.; Herrera, L.; Jia, J.; Fu, L.; Isurin, A.; Cook, A.; Huang, Y.; Wang, J. Design and Implementation of a Bidirectional Isolated Ćuk Converter for Low-Voltage and High-Current Automotive DC Source Applications. IEEE Trans. Veh. Technol. 2014, 63, 2567–2577. [Google Scholar] [CrossRef]
- Lee, H.S.; Yun, J.J. High-Efficiency Bidirectional Buck-Boost Converter for Photovoltaic and Energy Storage Systems in a Smart Grid. IEEE Trans. Power Electron. 2019, 34, 4316–4328. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, Y.; Park, S.J.; Kim, D.H. A Family of Bidirectional DC-DC Converters for Battery Storage System with High Voltage Gain. Energies 2019, 12, 1289. [Google Scholar] [CrossRef]
- Vighetti, S.; Ferrieux, J.P.; Lembeye, Y. Optimization and Design of a Cascaded DC/DC Converter Devoted to Grid-Connected Photovoltaic Systems. IEEE Trans. Power Electron. 2012, 27, 2018–2027. [Google Scholar] [CrossRef]
- Mak, O.C.; Ioinovici, A. Switched-Capacitor Inverter with High Power Density and Enhanced Regulation Capability. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 1998, 45, 336–347. [Google Scholar] [CrossRef]
- Makowski, M.S.; Maksimovic, D. Performance Limits of Switched-Capacitor DC-DC Converters. PESC Rec.—IEEE Annu. Power Electron. Spec. Conf. 1995, 2, 1215–1221. [Google Scholar] [CrossRef]
- Barzegarkhoo, R.; Forouzesh, M.; Lee, S.S.; Blaabjerg, F.; Siwakoti, Y.P. Switched-Capacitor Multilevel Inverters: A Comprehensive Review. IEEE Trans. Power Electron. 2022, 37, 11209–11243. [Google Scholar] [CrossRef]
- Thiyagarajan, A.; Praveen Kumar, S.G.; Nandini, A. Analysis and Comparison of Conventional and Interleaved DC/DC Boost Converter. In Proceedings of the Second International Conference on Current Trends in Engineering and Technology—ICCTET 2014, Coimbatore, India, 8 July 2014; pp. 198–205. [Google Scholar] [CrossRef]
- Zhao, B.; Song, Q.; Liu, W.; Sun, Y. Overview of Dual-Active-Bridge Isolated Bidirectional DC-DC Converter for High-Frequency-Link Power-Conversion System. IEEE Trans. Power Electron. 2014, 29, 4091–4106. [Google Scholar] [CrossRef]
- Henao-Bravo, E.E.; Ramos-Paja, C.A.; Saavedra-Montes, A.J.; González-Montoya, D.; Sierra-Pérez, J. Design Method of Dual Active Bridge Converters for Photovoltaic Systems with High Voltage Gain. Energies 2020, 13, 1711. [Google Scholar] [CrossRef]
- Gorji, S.A.; Sahebi, H.G.; Ektesabi, M.; Rad, A.B. Topologies and Control Schemes of Bidirectional DC–DC Power Converters: An Overview. IEEE Access 2019, 7, 117997–118019. [Google Scholar] [CrossRef]
- Shen, C.L.; Shen, Y.S.; Tsai, C.T. Isolated DC-DC Converter for Bidirectional Power Flow Controlling with Soft-Switching Feature and High Step-up/down Voltage Conversion. Energies 2017, 10, 296. [Google Scholar] [CrossRef]
- Lu, Y.J.; Liang, T.J.; Lin, C.H.; Chen, K.H. Design and Implementation of a Bidirectional DC-DC Forward/Flyback Converter with Leakage Energy Recycled. In Proceedings of the 2017 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), Singapore, 24–26 October 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, C.; Feng, J.; Kan, Z. Analysis of Soft Switching Conditions for Push-Pull Current Type Bidirectional DC/DC Converter. IEEE Access 2024, 12, 59386–59398. [Google Scholar] [CrossRef]
- Li, S.; Xiangli, K.; Smedley, K.M. A Control Map for a Bidirectional PWM Plus Phase-Shift-Modulated Push-Pull DC-DC Converter. IEEE Trans. Ind. Electron. 2017, 64, 8514–8524. [Google Scholar] [CrossRef]
- Mohammadi, F.; Khorsandi, A. Dual-Input Single-Output High Step-up DC–DC Converter for Renewable Energy Applications. IET Power Electron. 2024, 17, 337–349. [Google Scholar] [CrossRef]
- Banaei, M.R.; Ardi, H.; Alizadeh, R.; Farakhor, A. Non-Isolated Multi-Input-Single-Output DC/DC Converter for Photovoltaic Power Generation Systems. IET Power Electron. 2014, 7, 2806–2816. [Google Scholar] [CrossRef]
- Hou, S.; Chen, J.; Sun, T.; Bi, X. Multi-Input Step-Up Converters Based on the Switched-Diode-Capacitor Voltage Accumulator. IEEE Trans. Power Electron. 2016, 31, 381–393. [Google Scholar] [CrossRef]
- Zhou, L.W.; Zhu, B.X.; Luo, Q.M. High Step-up Converter with Capacity of Multiple Input. IET Power Electron. 2012, 5, 524–531. [Google Scholar] [CrossRef]
- Harini, S.; Chellammal, N.; Chokkalingam, B.; Mihet-Popa, L. A Novel High Gain Dual Input Single Output Z-Quasi Resonant (ZQR) DC/DC Converter for Off-Board EV Charging. IEEE Access 2022, 10, 83350–83367. [Google Scholar] [CrossRef]
- Kumar, G.G.; Sundaramoorthy, K. Dual-Input Non-isolated DC-DC Converter with Vehicle-to-Grid Feature. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 3324–3336. [Google Scholar] [CrossRef]
- Zhou, Z.; Wu, H.; Ma, X.; Xing, Y. A Non-Isolated Three-Port Converter for Stand-Alone Renewable Power System. IECON Proc. (Ind. Electron. Conf.) 2012, 3, 3352–3357. [Google Scholar] [CrossRef]
- Deihimi, A.; Seyed Mahmoodieh, M.E.; Iravani, R. A New Multi-Input Step-up DC–DC Converter for Hybrid Energy Systems. Electr. Power Syst. Res. 2017, 149, 111–124. [Google Scholar] [CrossRef]
- Varesi, K.; Hosseini, S.H.; Sabahi, M.; Babaei, E. A High-Voltage Gain Non-isolated Noncoupled Inductor Based Multi-Input DC-DC Topology with Reduced Number of Components for Renewable Energy Systems. Int. J. Circuit Theory Appl. 2018, 46, 505–518. [Google Scholar] [CrossRef]
- Zhu, B.; Zeng, Q.; Chen, Y.; Zhao, Y.; Liu, S. A Dual-Input High Step-Up DC/DC Converter with ZVT Auxiliary Circuit. IEEE Trans. Energy Convers. 2019, 34, 161–169. [Google Scholar] [CrossRef]
- Chen, Y.M.; Liu, Y.C.; Lin, S.H. Double-Input PWM DC/DC Converter for High-/Low-Voltage Sources. IEEE Trans. Ind. Electron. 2006, 53, 1538–1545. [Google Scholar] [CrossRef]
- Ferreira, A.d.O.; Brito, A.U.; Galhardo, M.A.B.; Ferreira, L.; Macêdo, W.N. Modeling, Control and Simulation of a Small Photovoltaic-Wind Water Pumping System without Battery Bank. Comput. Electr. Eng. 2020, 84, 106619. [Google Scholar] [CrossRef]
- Hassan, Z.; Khan, M.A.; Islam, M.R. Advanced DC-DC Converter Topologies to Boost the Voltage Gain for High Voltage Applications. Clean Energy 2024, 7, 555–570. [Google Scholar]
- Zhou, G.; Tian, Q.; Wang, L. Soft-Switching High Gain Three-Port Converter Based on Coupled Inductor for Renewable Energy System Applications. IEEE Trans. Ind. Electron. 2022, 69, 1521–1536. [Google Scholar] [CrossRef]
- Zheng, Y.; Brown, B.; Xie, W.; Li, S.; Smedley, K. High Step-Up DC-DC Converter with Zero Voltage Switching and Low Input Current Ripple. IEEE Trans. Power Electron. 2020, 35, 9418–9431. [Google Scholar] [CrossRef]
- Wu, H.; Wong, S.C.; Tse, C.K.; Chen, Q. Control and Modulation of Bidirectional Single-Phase AC-DC Three-Phase-Leg SPWM Converters with Active Power Decoupling and Minimal Storage Capacitance. IEEE Trans. Power Electron. 2016, 31, 4226–4240. [Google Scholar] [CrossRef]
- Yodwong, B.; Guilbert, D.; Phattanasak, M.; Kaewmanee, W.; Hinaje, M.; Vitale, G. AC-DC Converters for Electrolyzer Applications: State of the Art and Future Challenges. Electronics 2020, 9, 912. [Google Scholar] [CrossRef]
- Yaramasu, V.; Dekka, A.; Durán, M.J.; Kouro, S.; Wu, B. PMSG-Based Wind Energy Conversion Systems: Survey on Power Converters and Controls. IET Electr. Power Appl. 2017, 11, 956–968. [Google Scholar] [CrossRef]
- Nejabatkhah, F.; Li, Y.W.; Tian, H. Power Quality Control of Smart Hybrid AC/DC Microgrids: An Overview. IEEE Access 2019, 7, 52295–52318. [Google Scholar] [CrossRef]
- Yaramasu, V.; Wu, B.; Sen, P.C.; Kouro, S.; Narimani, M. High-Power Wind Energy Conversion Systems: State-of-the-Art and Emerging Technologies. Proc. IEEE 2015, 103, 740–788. [Google Scholar] [CrossRef]
- Alili, A.; Camara, M.B.; Dakyo, B.; Raharijaona, J. Reliability and Performances of Power Electronic Converters in Wind Turbine Applications. Int. J. Adv. Intell. Syst. 2021, 14, 61–72. [Google Scholar]
- Kitagawa, W.; Thiringer, T. Inverter Loss Analysis and Comparison for a 5 MW Wind Turbine System. In Proceedings of the 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), Warsaw, Poland, 11–14 September 2017; pp. 1–10. [Google Scholar] [CrossRef]
- Flourentzou, N.; Agelidis, V.G.; Demetriades, G.D. VSC-Based HVDC Power Transmission Systems: An Overview. IEEE Trans. Power Electron. 2009, 24, 592–602. [Google Scholar] [CrossRef]
- Blaabjerg, F.; Ma, K.; Yang, Y. Power Electronics for Renewable Energy Systems—Status and Trends. In Proceedings of the CIPS 2014 8th International Conference on Integrated Power Electronics Systems, Nuremberg, Germany, 25–27 February 2014; VDE: Nuremberg, Germany, 2014. [Google Scholar]
- Blaabjerg, F.; Ma, K. Future on Power Electronics for Wind Turbine Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 139–152. [Google Scholar] [CrossRef]
- Lingom, P.M.; Song-Manguelle, J.; Nyobe-Yome, J.M.; Doumbia, M.L. A Comprehensive Review of Compensation Control Techniques Suitable for Cascaded H-Bridge Multilevel Inverter Operation with Unequal DC Sources or Faulty Cells. Energies 2024, 17, 722. [Google Scholar] [CrossRef]
- Gao, D.Z.; Sun, K. Chapter 16—DC–AC Inverters. In Electric Renewable Energy Systems; Muhammad, H.R., Ed.; Academic Press: Boston, MA, USA, 2016; pp. 354–381. ISBN 978-012804448-3. [Google Scholar]
- Samizadeh, M.; Yang, X.; Karami, B.; Chen, W.; Blaabjerg, F.; Kamranian, M. A New Topology of Switched-Capacitor Multilevel Inverter with Eliminating Leakage Current. IEEE Access 2020, 8, 76951–76965. [Google Scholar] [CrossRef]
- Krishna, R.A.; Suresh, L.P. A Brief Review on Multi Level Inverter Topologies. In Proceedings of the 2017 International Conference on Data Management, Analytics and Innovation (ICDMAI), Pune, India, 24–26 February 2017. [Google Scholar] [CrossRef]
- Gorla, N.B.Y.; Kolluri, S.; Chai, M.; Panda, S.K. An Open-Circuit Fault Detection and Localization Scheme for Cascaded H-Bridge Multilevel Converter without Additional Sensors. IEEE Trans. Ind. Appl. 2021, 58, 457–467. [Google Scholar] [CrossRef]
- Perra, A. PWM Inverter Technology. IEEE Aerosp. Electron. Syst. Mag. 1992, 7, 20–22. [Google Scholar] [CrossRef]
- Klug, R.D.; Klaassen, N. High Power Medium Voltage Drives—Innovations, Portfolio, Trends. In Proceedings of the 2005 European Conference on Power Electronics and Applications, Dresden, Germany, 11–14 September 2005. [Google Scholar] [CrossRef]
- José, R.; Franquelo, L.G.; Samir, K.; León, J.I.; Portillo, R.C.; Prats, M.Á.M.; Pérez, M.A. Multilevel Converters: An Enabling Technology for High-Power Applications. Proc. IEEE 2009, 97, 1786–1817. [Google Scholar] [CrossRef]
- Franquelo, L.G.; Rodriguez, J.; Leon, J.I.; Kouro, S.; Portillo, R.; Prats, M.A.M. The Age of Multilevel Converters Arrives. IEEE Ind. Electron. Mag. 2008, 2, 28–39. [Google Scholar] [CrossRef]
- Khoun Jahan, H.; Abapour, M.; Zare, K. Switched-Capacitor-Based Single-Source Cascaded H-Bridge Multilevel Inverter Featuring Boosting Ability. IEEE Trans. Power Electron. 2019, 34, 1113–1124. [Google Scholar] [CrossRef]
- Kumari, S.; Verma, A.; Sandeep, N.; Yaragatti, U.; Pota, H. A Five-Level Transformer-Less Inverter with Self-Voltage Balancing and Boosting Ability. IEEE Trans. Ind. Appl. 2021, 57, 6237–6245. [Google Scholar] [CrossRef]
- Menye, J.S.; Lingom, P.M.; Song-Manguelle, J.; Nyobe-Yome, J.M.; Doumbia, M.L. Effects of Control Strategies on the Assessment of Power Converter Losses in Electric Vehicle Drivetrains. In Proceedings of the 2023 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE), Regina, SK, Canada, 24–27 September 2023; pp. 235–241. [Google Scholar]
- Lam, C.-S.; Wong, M.-C.; Han, Y.-D. Hysteresis Current Control of Hybrid Active Power Filters. IET Power Electron. 2012, 5, 1175–1187. [Google Scholar] [CrossRef]
- Singh, J.K.; Behera, R.K. Hysteresis Current Controllers for Grid Connected Inverter: Review and Experimental Implementation. In Proceedings of the 2018 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Chennai, India, 18–21 December 2018; pp. 1–6. [Google Scholar]
- Holmes, D.G.; Lipo, T.A. Pulse Width Modulation for Power Converters: Principles and Practice; John Wiley and Sons: Hoboken, NJ, USA, 2003; Volume 18. [Google Scholar]
- Antonio-Ferreira, A.; Collados-Rodriguez, C.; Gomis-Bellmunt, O. Modulation Techniques Applied to Medium Voltage Modular Multilevel Converters for Renewable Energy Integration: A Review. Electr. Power Syst. Res. 2018, 155, 21–39. [Google Scholar] [CrossRef]
- Holtz, J.; Lotzkat, W.; Werner, K.-H. A High-Power Multitransistor-Inverter Uninterruptable Power Supply System. IEEE Trans. Power Electron. 1988, 3, 278–285. [Google Scholar] [CrossRef]
- Agelidis, V.G.; Calais, M. Application Specific Harmonic Performance Evaluation of Multicarrier PWM Techniques. In Proceedings of the PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference (Cat. No. 98CH36196), Fukuoka, Japan, 22 May 1998; Volume 1, pp. 172–178. [Google Scholar]
- Wu, B.; Narimani, M. High-Power Converters and AC Drives; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Bushra, E.; Zeb, K.; Ahmad, I.; Khalid, M. A Comprehensive Review on Recent Trends and Future Prospects of PWM Techniques for Harmonic Suppression in Renewable Energies Based Power Converters. Results Eng. 2024, 22, 102213. [Google Scholar] [CrossRef]
- Lin, H.; Cai, C.; Chen, J.; Gao, Y.; Vazquez, S.; Li, Y. Modulation and Control Independent Dead-Zone Compensation for H-Bridge Converters: A Simplified Digital Logic Scheme. IEEE Trans. Ind. Electron. 2024, 71, 15239–15244. [Google Scholar] [CrossRef]
- Jayakumar, V.; Chokkalingam, B.; Munda, J.L. A Comprehensive Review on Space Vector Modulation Techniques for Neutral Point Clamped Multi-Level Inverters. IEEE Access 2021, 9, 112104–112144. [Google Scholar] [CrossRef]
- Lingom, P.M.; Song-Manguelle, J.; Menye, J.; Unruh, R.; Doumbia, M.L.; Jin, T. A Single-Carrier PWM Method for Uniform Step Asymmetrical Multilevel Converters. In Proceedings of the 2023 IEEE Energy Conversion Congress and Exposition (ECCE), Nashville, TN, USA, 29 October–2 November 2023; pp. 3599–3606. [Google Scholar]
- Xie, D.; Lin, C.; Deng, Q.; Lin, H.; Cai, C.; Basler, T.; Ge, X. Simple Vector Calculation and Constraint-Based Fault-Tolerant Control for a Single-Phase CHBMC. IEEE Trans. Power Electron. 2024. [Google Scholar] [CrossRef]
- Ogata, K. Modern Control Engineering, 5th ed.; Pearson Education: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Lin, H.; Chung, H.S.-H.; Shen, R.; Xiang, Y. Enhancing Stability of Dc Cascaded Systems with CPLs Using MPC Combined with NI and Accounting for Parameter Uncertainties. IEEE Trans. Power Electron. 2024, 39, 5225–5238. [Google Scholar] [CrossRef]
- Xu, Q.; Yan, Y.; Zhang, C.; Dragicevic, T.; Blaabjerg, F. An Offset-Free Composite Model Predictive Control Strategy for DC/DC Buck Converter Feeding Constant Power Loads. IEEE Trans. Power Electron. 2019, 35, 5331–5342. [Google Scholar] [CrossRef]
- Boukhnifer, M.; Chaibet, A.; Larouci, C. Experimental H-Infinity Robust Control of Aerial Vehicle Flight. In Proceedings of the 2011 19th Mediterranean Conference on Control & Automation (MED), Corfu, Greece, 20–23 June 2011; pp. 242–247. [Google Scholar]
- Toure, I.; Camara, M.-B.; Dakyo, B. Literature Review Based Control Strategies of Electrolyzers Systems. In Proceedings of the 2024 12th International Conference on Smart Grid (icSmartGrid), Shanghai, China, 25–27 October 2024; pp. 155–161. [Google Scholar]
- Babaiahgari, B.; Jeong, Y.; Park, J.-D. Dynamic Control of Region of Attraction Using Variable Inductor for Stabilizing DC Microgrids with Constant Power Loads. IEEE Trans. Ind. Electron. 2020, 68, 10218–10228. [Google Scholar] [CrossRef]
- Mosayebi, M.; Sadeghzadeh, S.M.; Gheisarnejad, M.; Khooban, M.H. Intelligent and Fast Model-Free Sliding Mode Control for Shipboard DC Microgrids. IEEE Trans. Transp. Electrif. 2020, 7, 1662–1671. [Google Scholar] [CrossRef]
Topology | Name | Voltage Gain | Efficiency | Advantages | Disadvantages | Experimental Prototype |
---|---|---|---|---|---|---|
[57] | Single-switch high-step-up Y-source boost converter | 95% | Maintains good trade-off between high voltage gain and low voltage stress of the devices. | Requires two separate control power supplies, which increases system cost and complexity. | 300 W 48 V DC input 380 V DC output | |
[62] | High-efficiency high-step-up DC-DC converter with dual coupled inductors for grid-connected PV systems | 94% |
|
| 1 kW 30 V DC input 400 V DC output | |
[63] | Soft-switched high-step-up DC-DC converter utilizing coupled inductor and voltage multiplier cells | 95% |
|
| 200 W 33 V DC input 403 V DC output | |
[64] | Novel high-gain soft-switching DC-DC converter with improved P&O MPPT | 96% |
|
| 200 W 20 V DC input 200 V DC output | |
[65] | Cubic high gain | 92% |
| Necessitates frequency modulation, which results in the design of components at a lower frequency (175 kHz), making them 16.66% oversized compared to components designed for higher frequencies (210 kHz), which potentially leads to higher costs. | 57 W 12 V DC input 75.5 V DC output | |
[66] | Step-up LC RC | Dependent on the parameters of the resonant tank (Lr and Cr) | 95% |
|
| 1 kW 100 V DC input 1000 V DC output |
[67] | A new high-gain DC-DC converter with MPC-based MPPT for PV system | 93% |
|
| 150 W 20 V DC input 100 V DC output | |
[68] | Ultra-high-gain quadratic DC-DC boost converter | 90% |
| Requires two separate control power supplies due to the presence of two semiconductor switches without a common ground, which increases system cost and complexity. | 150 W 12 V DC input 80 V DC output |
Topology | Name | Efficiency | Advantages | Disadvantages | Experimental Prototype |
---|---|---|---|---|---|
[69] | Soft-switching current-fed LCC-T resonant | 95% |
| There is no guarantee of the reliability of the resonant inductor and capacitors under continuous high-power applications. | 288 W 30–42 V DC input 380 V DC output |
[70] | Switched coupled inductor boost | 97% |
|
| 250 W 50 V DC input 500 V DC output |
[71] | Dual-flyback DC-DC converter with a resonant voltage multiplier | 96.5% |
|
| 120 W 24 V DC input 200 V DC output |
[72] | Flyback converter utilizing a voltage doubler circuit | 96% |
|
| 125 W 24 V DC input 350 V DC output |
[73] | Flyback converter with an active clamp circuit | 86% | Recovers the leakage energy of the flyback transformer and charges the clamping capacitor using the trapped leakage energy. | Low efficiency at various load conditions and at full load. | 40 W 18–22 V DC input 110 V DC output |
[74] | Novel DC-DC converter with high current capability | - |
| The experimental prototype experienced more voltage variations and current fluctuations than predicted in the simulation, which suggests that the converter may have difficulty maintaining consistent performance. | 1.2 kW 100 V DC input 300 V DC output |
[75] | Novel self-reconfigurable LLC-type RC | 95% | Achieves high voltage gain while maintaining low switch losses and reducing voltage stress on the switches. | Encountered discontinuous current flows impacting RES performance and battery efficiency. | 300 W 25–50 V DC input 400 V DC output |
Isolated/ Non-Isolated | Topology | Voltage Gain | Advantages | Disadvantages | Major Applications |
---|---|---|---|---|---|
Non-isolated | Buck and boost [43,44,105,106] |
| Higher electromagnetic interference | PV systems, with or without ESS | |
Buck–boost [43,44,105,106] | |||||
Sepic–zeta [45,46,107] |
|
| ESS, distributed power systems | ||
Cuk [16,45,108,109] |
| Limited voltage gain | DC microgrid and integration between low-voltage high-current source and energy storage devices | ||
Cascaded [78,110,111,112] |
| High number of switches, which increases system cost and complexity | PV systems, ESS | ||
Switched capacitor [113,114,115] | 2 |
|
| PV systems, battery-powered systems, integrated circuits | |
Interleaved boost [116] |
|
| ESS | ||
Isolated | DAB [97,117,118] | - |
| Complex control algorithms to manage the phase shift between the bridges | PV systems, ESS, hybrid energy systems, and DC microgrids |
Half-bridge [39,78,97,108,119] |
| Suitable for low-power applications | Residential PV systems | ||
Full bridge [39,78,97,108,119] | Suitable for high-power applications |
| Industrial applications | ||
Flyback [39,78,97,119,120] |
|
| PV systems, DC microgrids, distributed generation system | ||
Forward [39,78,97,119,120,121] | DN |
| Complex structure | PV systems | |
Push–pull [122,123] | DN |
|
| Grid-tied PV systems, ESS |
Topology | Name | Voltage Gain | Efficiency | Applications | Advantages | Disadvantages | Experimental Prototype |
---|---|---|---|---|---|---|---|
[124] | Dual input–single output | 95% | Hybrid (PV and WT), stand-alone systems, including battery ESS and DC motor |
| Complex control mechanisms. | 150 W 10 V DC input 1 10 V DC input 2 100 V DC output | |
[125] | Multi-input–single output DC-DC converter | 98% | DC microgrid, grid-tied PV systems |
|
| 86 W 20 V DC input 1 30 V DC input 2 95 V DC output | |
[136] | Doubler boost converter and the single-switch converter combined with voltage multiplier cells | - | PV and WT |
|
| 12 V DC input 480 V–960 V DC output | |
[137] | High-gain three-port inverter featuring soft switching | 96% | PV and ESS |
| Discontinuous current flows impacting performance of RES and battery efficiency. | 180 W 30 V RES + 48 V ESS |
2L-VSC | 3L-NPC | 3L-ANPC | 3L-FC | |
---|---|---|---|---|
Number of switches | 12 | 24 | 36 | 24 |
Number of diodes | 0 | 12 | 0 | 0 |
Number of capacitors | 0 | 0 | 0 | 6 |
Device voltage stress | ||||
Power density | Moderate | High | High | High |
Modularity | Low | Low | Low | High |
Control complexity | Moderate | Medium | Medium | High |
Harmonic performance | High | Low | Low | Low |
Power | Limited 0.75 MW | High 3.0–12.0 MW | High 3.0–12.0 MW | High 3.0–12.0 MW |
Advantages | Disadvantages |
---|---|
|
|
Topology | Name | Efficiency | Advantages | Disadvantages | Experimental Prototype |
---|---|---|---|---|---|
[151] | Modified switched-capacitor MLI | 96% |
|
| 500 W 183 V DC input 220 V AC output |
[158] | Switched-capacitor single-source cascaded MLI | - |
|
| 275 W 80 V DC input 311 V AC output |
[159] | Five-level transformer-less inverter with self-voltage balancing and boosting ability | 98% |
| Requires complex control strategies. | 1 kW 100 V DC input 200 V AC output |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Assaf, J.; Menye, J.S.; Camara, M.B.; Guilbert, D.; Dakyo, B. Power Converter Topologies for Heat Pumps Powered by Renewable Energy Sources: A Literature Review. Electronics 2024, 13, 3965. https://doi.org/10.3390/electronics13193965
Assaf J, Menye JS, Camara MB, Guilbert D, Dakyo B. Power Converter Topologies for Heat Pumps Powered by Renewable Energy Sources: A Literature Review. Electronics. 2024; 13(19):3965. https://doi.org/10.3390/electronics13193965
Chicago/Turabian StyleAssaf, Joyce, Joselyn Stephane Menye, Mamadou Baïlo Camara, Damien Guilbert, and Brayima Dakyo. 2024. "Power Converter Topologies for Heat Pumps Powered by Renewable Energy Sources: A Literature Review" Electronics 13, no. 19: 3965. https://doi.org/10.3390/electronics13193965
APA StyleAssaf, J., Menye, J. S., Camara, M. B., Guilbert, D., & Dakyo, B. (2024). Power Converter Topologies for Heat Pumps Powered by Renewable Energy Sources: A Literature Review. Electronics, 13(19), 3965. https://doi.org/10.3390/electronics13193965