EEUR-Net: End-to-End Optimization of Under-Sampling and Reconstruction Network for 3D Magnetic Resonance Imaging
Abstract
:1. Introduction
- Inspired by the unique characteristics of 3D k-space, we design a novel 3D k-space under-sampling pattern. This pattern selectively under-samples in the two phase encoding directions while fully sampling in the frequency encoding direction, enabling the generation of an optimal under-sampling pattern specifically tailored for the training dataset.
- We propose an end-to-end 3D under-sampling and reconstruction network (EEUR-Net), where the integrated training process generates a learned under-sampling pattern and enhances reconstruction, significantly improving image quality.
- Experiments reveal that our network performs well, with the learned under-sampling pattern surpassing many established methods. Furthermore, the end-to-end three-dimensional under-sampling and reconstruction approach achieves more robust and accurate results in 3D MRI, demonstrating impressive performance on the Stanford University 3D FSE knee dataset.
2. Related Works
2.1. Studies on Undersampling Schemes
2.2. MR Image Reconstruction Using Deep Learning
3. Methods
3.1. Three-Dimensional k-Space Characteristics and Three-Dimensional Undersampling Scheme
3.2. EEUR-Net
3.2.1. Overall Framework of EEUR-Net
3.2.2. Related Mathematical Principle
3.2.3. Network Architecture of EEUR-Net
4. Experiments and Results
4.1. Dataset
4.2. Implementation Details
4.3. Comparison with Other Methods
4.3.1. Visualization of Under-Sampling Patterns of Various Methods
4.3.2. Quantitative Evaluation
4.3.3. Qualitative Evaluation
5. Conclusions
6. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, Z.; Pang, Y.; Sun, Y.; Liu, X. DMFF-Net: Densely Macroscopic Feature Fusion Network for Fast Magnetic Resonance Image Reconstruction. Electronics 2022, 11, 3862. [Google Scholar] [CrossRef]
- Bahadir, C.D.; Wang, A.Q.; Dalca, A.V.; Sabuncu, M.R. Deep-Learning-Based Optimization of the Under-Sampling Pattern in MRI. IEEE Trans. Comput. Imaging 2020, 6, 1139–1152. [Google Scholar] [CrossRef]
- Georgescu, M.-I.; Ionescu, R.T.; Verga, N. Convolutional neural networks with intermediate loss for 3D super-resolution of CT and MRI scans. IEEE Access 2020, 8, 49112–49124. [Google Scholar] [CrossRef]
- Hamilton, J.; Franson, D.; Seiberlich, N. Recent advances in parallel imaging for MRI. Prog. Nucl. Magn. Reson. Spectrosc. 2017, 101, 71–95. [Google Scholar] [CrossRef] [PubMed]
- Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [Google Scholar] [CrossRef]
- Burshtein, A.; Birk, M.; Chernyakova, T.; Eilam, A.; Kempinski, A.; Eldar, Y.C. Sub-Nyquist sampling and Fourier domain beamforming in volumetric ultrasound imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2016, 63, 703–716. [Google Scholar] [CrossRef] [PubMed]
- Pruessmann, K.P.; Weiger, M.; Scheidegger, M.B.; Boesiger, P. SENSE: Sensitivity encoding for fast MRI. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 1999, 42, 952–962. [Google Scholar] [CrossRef]
- Sodickson, D.K.; Manning, W.J. Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays. Magn. Reson. Med. 1997, 38, 591–603. [Google Scholar] [CrossRef]
- Griswold, M.A.; Jakob, P.M.; Heidemann, R.M.; Nittka, M.; Jellus, V.; Wang, J.; Kiefer, B.; Haase, A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 2002, 47, 1202–1210. [Google Scholar] [CrossRef]
- Otazo, R.; Candes, E.; Sodickson, D.K. Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magn. Reson. Med. 2015, 73, 1125–1136. [Google Scholar] [CrossRef]
- Block, K.T.; Uecker, M.; Frahm, J. Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn. Reson. Med. Off. J. Int. Soc. Magn. Reson. Med. 2007, 57, 1086–1098. [Google Scholar] [CrossRef] [PubMed]
- Ehrhardt, M.J.; Betcke, M.M. Multicontrast MRI reconstruction with structure-guided total variation. SIAM J. Imaging Sci. 2016, 9, 1084–1106. [Google Scholar] [CrossRef]
- Dar, S.U.; Yurt, M.; Karacan, L.; Erdem, A.; Erdem, E.; Cukur, T. Image synthesis in multi-contrast MRI with conditional generative adversarial networks. IEEE Trans. Med. Imaging 2019, 38, 2375–2388. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.Z.; Wang, P.; Chen, X.; Chen, T.; Sun, S. Pyramid convolutional RNN for MRI image reconstruction. IEEE Trans. Med. Imaging 2022, 41, 2033–2047. [Google Scholar] [CrossRef] [PubMed]
- Pravitasari, A.A.; Iriawan, N.; Almuhayar, M.; Azmi, T.; Irhamah, I.; Fithriasari, K.; Purnami, S.W.; Ferriastuti, W. UNet-VGG16 with transfer learning for MRI-based brain tumor segmentation. TELKOMNIKA Telecommun. Comput. Electron. Control. 2020, 18, 1310–1318. [Google Scholar] [CrossRef]
- Fan, X.; Lian, Q. Compressed sensing magnetic resonance image reconstruction based on double sparse model. J. Biomed. Eng. 2018, 35, 688–696. [Google Scholar]
- Khare, K.; Hardy, C.J.; King, K.F.; Turski, P.A.; Marinelli, L. Accelerated MR imaging using compressive sensing with no free parameters. Magn. Reson. Med. 2012, 68, 1450–1457. [Google Scholar] [CrossRef]
- Ding, P.L.K.; Li, Z.; Zhou, Y.; Li, B. Deep residual dense U-Net for resolution enhancement in accelerated MRI acquisition. In Proceedings of the Medical Imaging 2019: Image Processing, San Diego, CA, USA, 16–21 February 2019; pp. 110–117. [Google Scholar]
- Bahadir, C.D.; Dalca, A.V.; Sabuncu, M.R. Learning-based optimization of the under-sampling pattern in MRI. In Proceedings of the Information Processing in Medical Imaging: 26th International Conference, IPMI 2019, Hong Kong, China, 2–7 June 2019; pp. 780–792. [Google Scholar]
- Wang, S.; Su, Z.; Ying, L.; Peng, X.; Zhu, S.; Liang, F.; Feng, D.; Liang, D. Accelerating magnetic resonance imaging via deep learning. In Proceedings of the 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), Prague, Czech Republic, 13–16 April 2016; pp. 514–517. [Google Scholar]
- Zhang, H.; Shinomiya, Y.; Yoshida, S. 3D MRI reconstruction based on 2D generative adversarial network super-resolution. Sensors 2021, 21, 2978. [Google Scholar] [CrossRef]
- Han, Y.; Sunwoo, L.; Ye, J.C. k-space deep learning for accelerated MRI. IEEE Trans. Med. Imaging 2019, 39, 377–386. [Google Scholar] [CrossRef]
- Shrot, Y.; Frydman, L. Spatially encoded NMR and the acquisition of 2D magnetic resonance images within a single scan. J. Magn. Reson. 2005, 172, 179–190. [Google Scholar] [CrossRef]
- Pipe, J.G.; Zwart, N.R.; Aboussouan, E.A.; Robison, R.K.; Devaraj, A.; Johnson, K.O. A new design and rationale for 3D orthogonally oversampled k-space trajectories. Magn. Reson. Med. 2011, 66, 1303–1311. [Google Scholar] [CrossRef] [PubMed]
- Available online: http://mridata.org/list?project=Stanford%20Fullysampled%203D%20FSE%20Knees (accessed on 3 January 2024).
- Zijlstra, F.; Viergever, M.A.; Seevinck, P.R. Evaluation of variable density and data-driven k-space undersampling for compressed sensing magnetic resonance imaging. Investig. Radiol. 2016, 51, 410–419. [Google Scholar] [CrossRef] [PubMed]
- Kijowski, R.; Gold, G.E. Routine 3D magnetic resonance imaging of joints. J. Magn. Reson. Imaging 2011, 33, 758–771. [Google Scholar] [CrossRef] [PubMed]
- Overman, D. This Novel Technology Could Increase 3D MRI Scan Speeds. AXIS Imaging News 2022, 8, 2–4. [Google Scholar]
- Anders, J.; Dreyer, F.; Krüger, D.; Schwartz, I.; Plenio, M.B.; Jelezko, F. Progress in miniaturization and low-field nuclear magnetic resonance. J. Magn. Reson. 2021, 322, 106860. [Google Scholar] [CrossRef]
Method | AF | NMSE↓ | PSNR↑ | SSIM↑ |
---|---|---|---|---|
Uniform | 4 | 0.01712 | 36.44 | 0.9034 |
Radial | 4 | 0.02377 | 34.68 | 0.8854 |
Equispaced | 4 | 0.02198 | 35.32 | 0.8979 |
Poisson | 4 | 0.01928 | 36.71 | 0.9123 |
EEUR-Net (Ours) | 4 | 0.01013 | 38.65 | 0.9324 |
Method | AF | NMSE↓ | PSNR↑ | SSIM↑ |
---|---|---|---|---|
Uniform | 8 | 0.0597 | 33.67 | 0.8896 |
Radial | 8 | 0.07092 | 32.71 | 0.867 |
Equispaced | 8 | 0.05505 | 33.45 | 0.8774 |
Poisson | 8 | 0.4762 | 34.88 | 0.8921 |
EEUR-Net (Ours) | 8 | 0.02484 | 36.67 | 0.9109 |
Method | AF | NMSE | PSNR | SSIM |
---|---|---|---|---|
EEUR-Net (Ours) | 4 | 0.01361 | 37.86 | 0.9269 |
EEUR-Net (Ours) | 8 | 0.02766 | 36.13 | 0.9041 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Q.; Liu, Y.; Xiao, J.; Pang, Y. EEUR-Net: End-to-End Optimization of Under-Sampling and Reconstruction Network for 3D Magnetic Resonance Imaging. Electronics 2024, 13, 277. https://doi.org/10.3390/electronics13020277
Dong Q, Liu Y, Xiao J, Pang Y. EEUR-Net: End-to-End Optimization of Under-Sampling and Reconstruction Network for 3D Magnetic Resonance Imaging. Electronics. 2024; 13(2):277. https://doi.org/10.3390/electronics13020277
Chicago/Turabian StyleDong, Quan, Yiming Liu, Jing Xiao, and Yanwei Pang. 2024. "EEUR-Net: End-to-End Optimization of Under-Sampling and Reconstruction Network for 3D Magnetic Resonance Imaging" Electronics 13, no. 2: 277. https://doi.org/10.3390/electronics13020277
APA StyleDong, Q., Liu, Y., Xiao, J., & Pang, Y. (2024). EEUR-Net: End-to-End Optimization of Under-Sampling and Reconstruction Network for 3D Magnetic Resonance Imaging. Electronics, 13(2), 277. https://doi.org/10.3390/electronics13020277