The Optimization of Program Operation for Low Power Consumption in 3D Ferroelectric (Fe)-NAND Flash Memory
Abstract
:1. Introduction
2. Structure of the Proposed Program Operation
3. Simulation Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Park, K.T.; Nam, S.; Kim, D.; Kwak, P.; Lee, D.; Choi, Y.; Choi, M.; Kwak, D.; Kim, D.; Kim, M.; et al. Three-Dimensional 128 Gb MLC Vertical NAND Flash Memory with 24-WL Stacked Layers and 50 MB/s High-Speed Programming. IEEE J. Solid State Circuits 2014, 50, 204–213. [Google Scholar] [CrossRef]
- Cheong, W.; Yoon, C.; Woo, S.; Han, K.; Kim, D.; Lee, C.; Choi, Y.; Kim, S.; Kang, D.; Yu, G.; et al. A Flash Memory Controller for 15-μs Ultra-Low-Latency SSD Using High-Speed 3D NAND Flash with 3-μs Read Time. In Proceedings of the 2018 IEEE International Solid-State Circuits Conference-(ISSCC 2018), San Francisco, CA, USA, 11–15 February 2018. [Google Scholar]
- Choi, Y.J.; Suh, K.D.; Koh, Y.N.; Park, J.W.; Lee, K.J.; Cho, Y.J.; Suh, B.H. A High Speed Programming Scheme for Multi-level NAND Flash Memory. In Proceedings of the Symposium on V.L.S.I. Circuits, Digest of Technical Papers, Honolulu, HI, USA, 13–15 June 1996. [Google Scholar]
- Takeuchi, K.; Tanaka, T.; Tanzawa, T. A Multipage Cell Architecture for High-Speed Programming Multilevel NAND Flash Memories. IEEE J. Solid State Circuits 1998, 33, 1228–1238. [Google Scholar] [CrossRef]
- Takeuchi, K. Novel Co-design of NAND Flash Memory and NAND Flash Controller Circuits for sub-30 Nm Low-Power High-Speed Solid-State Drives (SSD). IEEE J. Solid State Circuits 2009, 44, 1227–1234. [Google Scholar] [CrossRef]
- Kim, M.K.; Kim, I.J.; Lee, J.S. CMOS-Compatible Ferroelectric NAND Flash Memory for High-Density, Low-Power, and High-Speed Three-Dimensional Memory. Sci. Adv. 2021, 7, e1341. [Google Scholar] [CrossRef] [PubMed]
- Park, C.; Talawar, P.; Won, D.; Jung, M.; Im, J.; Kim, S.; Choi, Y. A High Performance Controller for NAND Flash-Based Solid State Disk. In Proceedings of the 21st IEEE Non-Volatile Semiconductor Memory Workshop, Monterey, CA, USA, 12–16 February 2006. [Google Scholar]
- Kgil, T.; Mudge, T. Flashcache: A NAND Flash Memory File Cache for Low Power Web Servers. In Proceedings of the 2006 International Conference on Compilers, Architecture, and Synthesis for Embedded Systems, Seoul, Republic of Korea, 22–25 October 2006; pp. 103–112. [Google Scholar] [CrossRef]
- Compagnoni, C.M.; Goda, A.; Spinelli, A.S.; Feeley, P.; Lacaita, A.L.; Visconti, A. Reviewing the evolution of the NAND flash technology. Proc. IEEE 2017, 105, 1609–1633. [Google Scholar] [CrossRef]
- Kang, M.; Park, I.H.; Chang, I.J.; Lee, K.; Seo, S.; Park, B.G.; Shin, H. An Accurate Compact Model Considering Direct-Channel Interference of Adjacent Cells in sub-30-nm NAND Flash Technologies. IEEE Electron Device Lett. 2012, 33, 1114–1116. [Google Scholar] [CrossRef]
- Kang, M.; Lee, K.; Chae, D.H.; Park, B.G.; Shin, H. The Compact Modeling of Channel Potential in sub-30-nm NAND Flash Cell String. IEEE Electron Device Lett. 2012, 33, 321–323. [Google Scholar] [CrossRef]
- Park, M.; Kim, K.; Park, J.H.; Choi, J.H. Direct Field Effect of Neighboring Cell Transistor on Cell-to-Cell Interference of NAND Flash Cell Arrays. IEEE Electron Device Lett. 2008, 30, 174–177. [Google Scholar] [CrossRef]
- Jeong, W.; Im, J.W.; Kim, D.H.; Nam, S.W.; Shim, D.K.; Choi, M.H.; Yoon, H.J.; Kim, D.H.; Kim, Y.S.; Park, H.W.; et al. A 128 Gb 3b/cell V-NAND Flash Memory with 1 Gigabit per Second I/O Rate. IEEE J. Solid State Circuits 2015, 51, 204–212. [Google Scholar]
- Choi, E.S.; Park, S.K. Device Considerations for High Density and Highly Reliable 3D NAND Flash Cell in near Future. In Proceedings of the 2012 International Electron. Devices Meeting, San Francisco, CA, USA, 10–13 December 2012. [Google Scholar] [CrossRef]
- Ham, I.; Jeong, Y.; Baik, S.J.; Kang, M. Ferroelectric Polarization Aided Low Voltage Operation of 3D NAND Flash Memories. Electronics 2020, 10, 38. [Google Scholar] [CrossRef]
- Seo, Y.; An, H.; Yeong Song, M.; Geun Kim, T. Charge Trap Flash Memory Using Ferroelectric Materials as a Blocking Layer. Appl. Phys. Lett. 2012, 100, 173507. [Google Scholar] [CrossRef]
- Wang, S.; Takahashi, M.; Li, Q.H.; Takeuchi, K.; Sakai, S. Operational Method of a Ferroelectric (Fe)-NAND Flash Memory Array. Semicond. Sci. Technol. 2009, 24, 105029. [Google Scholar] [CrossRef]
- Kim, G.; Lee, S.; Eom, T.; Kim, T.; Jung, M.; Shin, H.; Jeong, Y.; Kang, M.; Jeon, S. High performance ferroelectric field-effect transistors for large memory-window, high-reliability, high-speed 3D vertical NAND flash memory. J. Mater. Chem. C 2022, 10, 9802–9812. [Google Scholar] [CrossRef]
- Choi, S.; Choi, C.; Jeong, J.K.; Kang, M.; Song, Y.H. A Novel Structure and Operation Scheme of Vertical Channel NAND Flash with Ferroelectric Memory for Multi String Operations. Electronics 2020, 10, 32. [Google Scholar] [CrossRef]
- Synopsys Inc. Sentaurus Device User Guide; Version 2014.09; Synopsys Inc.: Mountain View, CA, USA, 2014. [Google Scholar]
- Sah, C.T.; Shockley, W. Electron-Hole Recombination Statistics in Semiconductors Through Flaws with Many Charge Conditions. Phys. Rev. 1958, 109, 1103–1115. [Google Scholar] [CrossRef]
- O’Neil, M.; Marohn, J.; McLendon, G. Dynamics of Electron-Hole Pair Recombination in Semiconductor Clusters. J. Phys. Chem. 1990, 94, 4356–4363. [Google Scholar] [CrossRef]
- Moser, J.; Grätzel, M.; Gallay, R. Inhibition of Electron-Hole Recombination in Substitutionally Doped Colloidal Semiconductor Crystallites. Helv. Chim. Acta 1987, 70, 1596–1604. [Google Scholar] [CrossRef]
- Zhang, Y.; Jin, L.; Zou, X.; Liu, H.; Zhang, A.; Huo, Z. A novel program scheme for program disturbance optimization in 3-D NAND flash memory. IEEE Electron Device Lett. 2018, 39, 959–962. [Google Scholar] [CrossRef]
- Torsi, A.; Zhao, Y.; Liu, H.; Tanzawa, T.; Goda, A.; Kalavad, P.; Parat, K. A Program Disturb Model and Channel Leakage Current Study for sub-20 Nm NAND Flash Cells. IEEE Trans. Electron Devices 2010, 58, 11–16. [Google Scholar] [CrossRef]
- Shim, K.S.; Choi, E.S.; Jung, S.W.; Kim, S.H.; Yoo, H.S.; Jeon, K.S.; Joo, H.S.; Oh, J.S.; Jang, Y.S.; Park, K.J.; et al. Inherent Issues and Challenges of Program Disturbance of 3D NAND Flash Cell. In Proceedings of the 4th IEEE International Memory Workshop, Milan, Italy, 20–23 May 2012. [Google Scholar]
Parameters | Value |
---|---|
SiO2 thickness | 20 nm |
Poly-Si channel thickness | 20 nm |
HfO2 thickness | 10 nm |
Gate length (WL, SSL, GSL) | 40 nm |
Spacer length | 40 nm |
Selected cell | WL1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, M.; Lee, G.; Ryu, G.; Kim, H.; Kang, M. The Optimization of Program Operation for Low Power Consumption in 3D Ferroelectric (Fe)-NAND Flash Memory. Electronics 2024, 13, 316. https://doi.org/10.3390/electronics13020316
Yun M, Lee G, Ryu G, Kim H, Kang M. The Optimization of Program Operation for Low Power Consumption in 3D Ferroelectric (Fe)-NAND Flash Memory. Electronics. 2024; 13(2):316. https://doi.org/10.3390/electronics13020316
Chicago/Turabian StyleYun, Myeongsang, Gyuhyeon Lee, Gyunseok Ryu, Hyoungsoo Kim, and Myounggon Kang. 2024. "The Optimization of Program Operation for Low Power Consumption in 3D Ferroelectric (Fe)-NAND Flash Memory" Electronics 13, no. 2: 316. https://doi.org/10.3390/electronics13020316
APA StyleYun, M., Lee, G., Ryu, G., Kim, H., & Kang, M. (2024). The Optimization of Program Operation for Low Power Consumption in 3D Ferroelectric (Fe)-NAND Flash Memory. Electronics, 13(2), 316. https://doi.org/10.3390/electronics13020316