SEPIC-Boost-Based Unidirectional PFC Rectifier with Wide Output Voltage Range
Abstract
:1. Introduction
2. Analysis of the Operating Principles of the Novel Topology
2.1. Configuration of the Novel Topology
2.2. Mathematical Modeling
3. Control Strategy of the Hybrid Rectifier
3.1. Double Closed-Loop Control Strategy
3.2. Balancing Control of the DC Capacitor Voltage
4. Simulation and Experimental Verifications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gupta, J.; Singh, B. Single-Stage Isolated Bridgeless Charger for Light Electric Vehicle with Improved Power Quality. IEEE Trans. Ind. Appl. 2022, 58, 6357–6367. [Google Scholar] [CrossRef]
- Xu, B.; Yan, Z.; Zhou, W.; Zhang, L.; Yang, H.; Liu, Y.; Liu, L. A Bidirectional Integrated Equalizer Based on the Sepic-Zeta Converter for Hybrid Energy Storage System. IEEE Trans. Power Electron. 2022, 37, 12659–12668. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, X.; Dou, Y.; Ouyang, Z.; Andersen, M. GaN-Based ZVS Bridgeless Dual-SEPIC PFC Rectifier with Integrated Inductors. IEEE Trans. Power Electr. 2021, 36, 11483–11498. [Google Scholar] [CrossRef]
- Gupta, J.; Singh, B. A High Power Factor Rectifier with Excellent Performance Characteristics for Electric Vehicle Charging Applications. IEEE Trans. Ind. Appl. 2023, 59, 1–11. [Google Scholar] [CrossRef]
- Costa, P.J.S.; Ewerling, M.V.M.; Font, C.H.I.; Lazzarin, T.B. Unidirectional Three-Phase Voltage-Doubler SEPIC PFC Rectifier. IEEE Trans. Power Electr. 2021, 36, 6761–6773. [Google Scholar] [CrossRef]
- Gonçalves, J.T.; Valtchev, S.; Melicio, R.; Gonçalves, A.; Blaabjerg, F. Hybrid Three-Phase Rectifiers with Active Power Factor Correction: A Systematic Review. Electronics 2021, 10, 1520. [Google Scholar] [CrossRef]
- Chen, J.; Chang, C. Analysis and Design of SEPIC Converter in Boundary Conduction Mode for Universal-Line Power Factor Correction Applications. In Proceedings of the 2001 IEEE 32nd Annual Power Electronics Specialists Conference (IEEE Cat. No.01CH37230), Vancouver, BC, Canada, 17–21 June 2001; Volume 2, pp. 742–747. [Google Scholar]
- Kwon, J.-M.; Choi, W.-Y.; Lee, J.-J.; Kim, E.-H.; Kwon, B.-H. Continuous-Conduction-Mode SEPIC Converter with Low Reverse-Recovery Loss for Power Factor Correction. IEE Proc. Electr. Power Appl. 2006, 153, 673–681. [Google Scholar] [CrossRef]
- Hosseinabadi, F.; Adib, E. A Soft-Switching Step-Down PFC Converter with Output Voltage Doubler and High Power Factor. IEEE Trans. Power Electr. 2019, 34, 416–424. [Google Scholar] [CrossRef]
- Vo, D.-V.; Nguyen, K.M.; Lim, Y.-C.; Choi, J.-H. A Single-Stage Bimodal Transformerless Inverter with Common-Ground and Buck-Boost Features. Electronics 2023, 12, 221. [Google Scholar] [CrossRef]
- Cortez, D.F.; Barbi, I. A Family of High-Voltage Gain Single-Phase Hybrid Switched-Capacitor PFC Rectifiers. IEEE Trans. Power Electr. 2015, 30, 4189–4198. [Google Scholar] [CrossRef]
- Jin, Q.; Ruan, X.; Ren, X.; Wang, Y.; Leng, Y. Step-Wave Switched Capacitor Converter for Compact Design of Envelope Tracking Power Supply. IEEE Trans. Ind. Electron. 2017, 64, 9587–9591. [Google Scholar] [CrossRef]
- He, L.; Lin, Z.; Tan, Q.; Lu, F.; Zeng, T. Interleaved High Step-Up Current Sharing Converter with Coupled Inductors. Electronics 2021, 10, 436. [Google Scholar] [CrossRef]
- Mahmoudi, M.; Ajami, A.; Babaei, E.; Soleimanifard, J. Theoretical and Experimental Evaluation of SEPIC-Based DC–DC Converters with Two-Winding and Three-Winding Coupled Inductors. Int. J. Circ. Theor. Appl. 2022, 50, 3891–3910. [Google Scholar] [CrossRef]
- Lee, S.-W.; Do, H.-L. High Step-Up Coupled-Inductor Cascade Boost DC–DC Converter with Lossless Passive Snubber. IEEE Trans. Ind. Electron. 2018, 65, 7753–7761. [Google Scholar] [CrossRef]
- Chincholkar, S.H.; Chan, C.-Y. Investigation of Current-Mode Controlled Cascade Boost Converter Systems: Dynamics and Stability Issues. IET Power Electron. 2016, 9, 911–920. [Google Scholar] [CrossRef]
- Kim, T.; Feng, D.; Jang, M.; Agelidis, V.G. Common Mode Noise Analysis for Cascaded Boost Converter with Silicon Carbide Devices. IEEE Trans. Power Electr. 2017, 32, 1917–1926. [Google Scholar] [CrossRef]
- Maroti, P.K.; Padmanaban, S.; Holm-Nielsen, J.B.; Sagar Bhaskar, M.; Meraj, M.; Iqbal, A. A New Structure of High Voltage Gain SEPIC Converter for Renewable Energy Applications. IEEE Access 2019, 7, 89857–89868. [Google Scholar] [CrossRef]
- Rivera, S.; Wu, B.; Kouro, S.; Yaramasu, V.; Wang, J. Electric Vehicle Charging Station Using a Neutral Point Clamped Converter with Bipolar DC Bus. IEEE Trans. Ind. Electron. 2015, 62, 1999–2009. [Google Scholar] [CrossRef]
- Bang, T.; Park, J.-W. Development of a ZVT-PWM Buck Cascaded Buck–Boost PFC Converter of 2 kW with the Widest Range of Input Voltage. IEEE Trans. Ind. Electron. 2018, 65, 2090–2099. [Google Scholar] [CrossRef]
- Sharifi, S.; Monfared, M.; Babaei, M. Ferdowsi Rectifiers—Single-Phase Buck-Boost Bridgeless PFC Rectifiers with Low Semiconductor Count. IEEE Trans. Ind. Electron. 2020, 67, 9206–9214. [Google Scholar] [CrossRef]
- Sharifi, S.; Babaei, M.; Monfared, M. A High Gain Buck PFC Synchronous Rectifier. In Proceedings of the Iranian Conference on Electrical Engineering (ICEE), Mashhad, Iran, 8–10 May 2018; pp. 1185–1190. [Google Scholar]
- de Melo, P.F.; Gules, R.; Romaneli, E.F.R.; Annunziato, R.C. A Modified SEPIC Converter for High-Power-Factor Rectifier and Universal Input Voltage Applications. IEEE Trans. Power Electr. 2010, 25, 310–321. [Google Scholar] [CrossRef]
- Costa, P.J.S.; Illa Font, C.H.; Lazzarin, T.B. Single-Phase Hybrid Switched-Capacitor Voltage-Doubler SEPIC PFC Rectifiers. IEEE Trans. Power Electr. 2018, 33, 5118–5130. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Yao, Z.; Li, T.; Peng, Z. Circulating Current Suppressing Strategy for MMC-HVDC Based on Nonideal Proportional Resonant Controllers Under Unbalanced Grid Conditions. IEEE Trans. Power Electr. 2015, 30, 387–397. [Google Scholar] [CrossRef]
Modes | S1 | S2 | L2 | Cb | Co1 | Co2 | vi |
---|---|---|---|---|---|---|---|
1 | 1 | 1 | C | D | D | D | 0 |
2 | 1 | 0 | C | D | D | C | vo2 |
3 | 0 | 1 | D | C | C | D | vo1 + vb |
4 | 0 | 0 | D | C | C | C | vo1 + vo2 + vb |
System Rating and Parameters | |
power rating P | 500 W 155 V |
amplitude of phase-voltage vs | |
the DC-link voltage vo | 200 V (Boost) 120 V (Buck) |
switching frequency f | 10 kHz |
input side inductance L1 | 3 mH |
output side inductance L2 | 2 mH |
DC-link capacitors Co1 and Co2 | 470μF |
output side capacitor Cb | 47μF |
Controller Parameters | |
input current controller’s bandwidth | 1 kHz |
DC-link voltage controller’s bandwidth | 40 Hz |
DC capacitor voltage controller’s bandwidth | 10 Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, H.; Li, X.; Wang, C.; Zhao, Z.; Shen, Y.; Yuan, W. SEPIC-Boost-Based Unidirectional PFC Rectifier with Wide Output Voltage Range. Electronics 2024, 13, 357. https://doi.org/10.3390/electronics13020357
Cheng H, Li X, Wang C, Zhao Z, Shen Y, Yuan W. SEPIC-Boost-Based Unidirectional PFC Rectifier with Wide Output Voltage Range. Electronics. 2024; 13(2):357. https://doi.org/10.3390/electronics13020357
Chicago/Turabian StyleCheng, Hong, Xin Li, Cong Wang, Zhihao Zhao, Yucheng Shen, and Wei Yuan. 2024. "SEPIC-Boost-Based Unidirectional PFC Rectifier with Wide Output Voltage Range" Electronics 13, no. 2: 357. https://doi.org/10.3390/electronics13020357
APA StyleCheng, H., Li, X., Wang, C., Zhao, Z., Shen, Y., & Yuan, W. (2024). SEPIC-Boost-Based Unidirectional PFC Rectifier with Wide Output Voltage Range. Electronics, 13(2), 357. https://doi.org/10.3390/electronics13020357