Electronic Barriers Behavioral Analysis of a Schottky Diode Structure Featuring Two-Dimensional MoS2
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. Schottky Barrier Simulation
3.2. I–V Curve Analysis
3.3. Comparison with Ideal Diode
3.4. Band Diagram Analysis
4. Implications and Outlook
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azam, N.; Mahjouri-Samani, M. Time-Resolved Growth of 2D WSe2 Monolayer Crystals. ACS Nano 2023, 17, 12519–12529. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Wan, T.; Zhou, Y.; Yan, J.; Chen, C.; Xu, Z.; Zhang, S.; Zhu, Y.; Yu, H.; Chai, Y. Highly nonlinear memory selectors with ultrathin MoS2/WSe2/MoS2 heterojunction. Adv. Funct. Mater. 2024, 34, 2304242. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, T.; Yi, Z.; Chen, X.; Dai, Z.; Tan, J. High Sensitive and Stable UV-Vis Photodetector Based on MoS2/MoO3 vdW Heterojunction. ACS Appl. Mater. Interfaces 2024, 16, 5413–5422. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Chen, Y.; Li, Q.; Chen, Y.; Huang, Y.; Zhu, W.; An, D.; Song, J.; Gan, Q.; Wang, K.; et al. Tunable Multi-Bands in Twisted Double Bilayer Graphene. 2D Mater. 2022, 9, 034001. [Google Scholar] [CrossRef]
- Dai, M.; Wu, Q.; Wang, C.; Liu, X.; Zhang, X.; Cai, Z.; Lin, L.; Gu, X.; Ostrikov, K.; Nan, H.; et al. High Performance Self-Driven Photodetectors Based on MoS2 Schottky Barrier Diode. Adv. Opt. Mater. 2024, 12, 2301900. [Google Scholar] [CrossRef]
- Azam, N.; Ahmadi, Z.; Yakupoglu, B.; Elafandi, S.; Tian, M.; Boulesbaa, A.; Mahjouri-Samani, M. Accelerated Synthesis of Atomically-Thin 2D Quantum Materials by a Novel Laser-Assisted Synthesis Technique. 2D Mater. 2020, 7, 015014. [Google Scholar] [CrossRef]
- Panasci, S.E.; Schilirò, E.; Cannas, M.; Agnello, S.; Koos, A.; Nemeth, M.; Pécz, B.; Roccaforte, F.; Giannazzo, F. Vertical Current Transport in Monolayer MoS2 Heterojunctions with 4H-SiC Fabricated by Sulfurization of Ultra-Thin MoOx Films. Solid State Phenom. 2024, 362, 7–12. [Google Scholar] [CrossRef]
- Deng, Y.; Luo, Z.; Conrad, N.J.; Liu, H.; Gong, Y.; Najmaei, S.; Ajayan, P.M.; Lou, J.; Xu, X.; Ye, P.D. Black Phosphorus-Monolayer MoS2 van der Waals Heterojunction p-n Diode. ACS Nano 2014, 8, 8292–8299. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, N.; Nipane, A.; Basheer, F.; Dubey, S.; Grover, S.; Deshmukh, M.M.; Lodha, S. Schottky barrier heights for Au and Pd contacts to MoS2. Appl. Phys. Lett. 2014, 105, 113505. [Google Scholar] [CrossRef]
- Ling, H.; Manna, A.; Shen, J.; Tung, H.-T.; Sharp, D.; Fröch, J.; Dai, S.; Majumdar, A.; Davoyan, A.R. Deeply Subwavelength Integrated Excitonic van der Waals Nanophotonics. Optica 2023, 10, 1345–1352. [Google Scholar] [CrossRef]
- Chen, M.; Nam, H.; Wi, S.; Ji, L.; Ren, X.; Bian, L.; Lu, S.; Liang, X. Stable Few-Layer MoS2 Rectifying Diodes Formed by Plasma-Assisted Doping. Appl. Phys. Lett. 2013, 103, 142110. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, M.; Li, J.; Fathi-Hafshejani, P.; Shen, J.; Jin, Y.; Cai, W.; Mahjouri-Samani, M.; Edgar, J.H.; Dai, S. Thickness-Scaling Phonon Resonance: A Systematic Study of Hexagonal Boron Nitride from Monolayers to Bulk Crystals. J. Appl. Phys. 2022, 132, 134302. [Google Scholar] [CrossRef]
- Hunter, N.; Azam, N.; Zobeiri, H.; Wang, R.; Mahjouri-Samani, M.; Wang, X. Interfacial Thermal Conductance Between Monolayer WSe2 and SiO2 Under Consideration of Radiative Electron-Hole Recombination. ACS Appl. Mater. Interfaces 2020, 12, 51069–51081. [Google Scholar] [CrossRef] [PubMed]
- Suleman, M.; Lee, S.; Kim, M.; Riaz, M.; Abbas, Z.; Park, H.; Nguyen, V.; Nasir, N.; Kumar, S.; Jung, J.; et al. Unveiling the Potential of Vanadium-Doped CVD-Grown p-Type MoS2 in Vertical Homojunction UV-Vis Photodiodes. Mater. Today Phys. 2024, 43, 101427. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Lee, J.-M.; Facchetti, A.; Marks, T.J.; Park, S.K. Recent Advances in Low-Dimensional Nanomaterials for Photodetectors. Small Methods 2023, 7, 2300246. [Google Scholar] [CrossRef]
- Mohammadzadeh, M.R.; Hasani, A.; Hussain, T.; Ghanbari, H.; Fawzy, M.; Abnavi, A.; Ahmadi, R.; Kabir, F.; De Silva, T.; Rajapakse, R.K.N.D.; et al. Enhanced Sensitivity in Photovoltaic 2D MoS2/Te Heterojunction VOC Sensors. Small 2024, 2402464. [Google Scholar] [CrossRef]
- Xiao, Y.; Zou, G.; Huo, J.; Sun, T.; Peng, J.; Li, Z.; Shen, D.; Liu, L. Local modulation of Au/MoS 2 Schottky barriers using a top ZnO nanowire gate for high-performance photodetection. Nanoscale Horizons 2024, 9, 285–294. [Google Scholar] [CrossRef]
- Xie, L.; Zong, Q.; Zhang, Q.; Sun, J.; Zhou, Z.; He, B.; Zhu, Z.; E, S.; Yao, Y. Hierarchical NiCoP Nanosheet Arrays with Enhanced Electrochemical Properties for High-Performance Wearable Hybrid Capacitors. J. Alloys Compd. 2019, 781, 783–789. [Google Scholar] [CrossRef]
- Kang, T.; You, J.; Wang, J.; Li, Y.; Hu, Y.; Tang, T.W.; Lin, X.; Li, Y.; Liu, L.; Gao, Z.; et al. Epitaxial Growth of Two-Dimensional MoO2–MoSe2 Metal–Semiconductor Heterostructures for Schottky Diodes. Nano Lett. 2024, 24, 8369–8377. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Chen, Y.-Z.; Liu, G.-H.; Chen, Y.-T.; Cheng, C.-M.; Chang, C.-S.; Chang, W.-H.; Liu, H.-L.; Li, L.-J. Self-Powered Ultraviolet Photodetector Based on the Au/MoS2/GaN Structure. ACS Appl. Electron. Mater. 2023, 5, 4199–4207. [Google Scholar]
- Sun, L.; Yan, X.; Zheng, J.; Yu, H.; Lu, Z.; Gao, S.-p.; Liu, L.; Pan, X.; Wang, D.; Wang, Z.; et al. Layer-Dependent Chemically Induced Phase Transition of Two-Dimensional MoS2. Nano Lett. 2016, 2, e1600069. [Google Scholar] [CrossRef] [PubMed]
- Samy, O.; Zeng, S.; Birowosuto, M.D.; El Moutaouakil, A. A Review on MoS2 Properties, Synthesis, Sensing Applications and Challenges. Crystals 2021, 11, 355. [Google Scholar] [CrossRef]
- Hu, X.; Guo, T.; Wang, C.; Liu, J.; Liu, Y.; Guo, Q. High-performance photocatalytic hydrogen evolution in a Zn0.5Cd0.5S/MoS2 p–n heterojunction. Vacuum 2024, 227, 109084. [Google Scholar] [CrossRef]
- Xiong, G.; Lu, J.; Wang, R.; Lin, Z.; Lu, S.; Li, J.; Tong, Z.; Qiu, Z.; Chen, K.; Sun, Y.; et al. A MoS2/BAs heterojunction as photodetector. Mater. Today Phys. 2024, 42, 101360. [Google Scholar] [CrossRef]
- Li, D.; Chen, M.; Zong, Q.; Zhang, Z. Floating-Gate Manipulated Graphene-Black Phosphorus Heterojunction for Nonvolatile Ambipolar Schottky Junction Memories, Memory Inverter Circuits, and Logic Rectifiers. Nano Lett. 2017, 17, 6631–6637. [Google Scholar] [CrossRef]
- Huang, L.; Ren, K.; Zhang, G.; Wan, J.; Zhang, H.; Zhang, G.; Qin, H. Tunable Thermal Conductivity of Two-Dimensional SiC Nanosheets by Grain Boundaries: Implications for the Thermo-Mechanical Sensor. ACS Appl. Nano Mater. 2024, 7, 15078–15085. [Google Scholar] [CrossRef]
- Zhao, L.; Huang, L.; Wang, K.; Mu, W.; Wu, Q.; Ma, Z.; Ren, K. Mechanical and Lattice Thermal Properties of Si-Ge Lateral Heterostructures. Molecules 2024, 29, 3823. [Google Scholar] [CrossRef]
- Ma, H.Y.; Wang, J.C.; Qin, P.; Liu, Y.J.; Chen, L.Y.; Wang, L.Q.; Zhang, L.C. Advances in additively manufactured titanium alloys by powder bed fusion and directed energy deposition: Microstructure, defects, and mechanical behavior. J. Mater. Sci. Technol. 2024, 183, 32–62. [Google Scholar] [CrossRef]
- Napoleonov, B.; Petrova, D.; Minev, N.; Rafailov, P.; Videva, V.; Karashanova, D.; Ranguelov, B.; Atanasova-Vladimirova, S.; Strijkova, V.; Dimov, D.; et al. Growth of Monolayer MoS2 Flakes via Close Proximity Re-Evaporation. Nanomaterials 2024, 14, 1213. [Google Scholar] [CrossRef]
- Li, X.; Wan, J.; Tang, Y.; Wang, C.; Zhang, Y.; Lv, D.; Guo, M.; Ma, Y.; Yang, Y. Boosting the UV–vis–NIR Photodetection Performance of MoS2 through the Cavity Enhancement Effect and Bulk Heterojunction Strategy. Acs Appl. Mater. Interfaces 2024, 16, 29003–29015. [Google Scholar] [CrossRef]
- Jariwala, D.; Sangwan, V.K.; Wu, C.-C.; Prabhumirashi, P.L.; Geier, M.L.; Marks, T.J.; Lauhon, L.J.; Hersam, M.C. Gate-tunable Carbon Nanotube–MoS2 Heterojunction p-n Diode. Proc. Natl. Acad. Sci. USA 2013, 110, 18076–18080. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Sang, D.; Fan, J.; Wang, Q.; Ge, S.; Yao, Y.; Wang, G.; Wang, X. High-Temperature Optoelectronic Transport Behavior of n-MoS2 Nanosheets/p-Diamond Heterojunction. J. Alloys Compd. 2024, 972, 172819. [Google Scholar] [CrossRef]
- Loh, J.Y.; Yap, F.M.; Ong, W.-J. 2D/2D Heterojunction Interface: Engineering of 1T/2H MoS2 Coupled with Ti3C2Tx Heterostructured Electrocatalysts for pH-Universal Hydrogen Evolution. J. Mater. Sci. Technol. 2024, 179, 86–97. [Google Scholar] [CrossRef]
- Xiang, X.; Qiu, Z.; Zhang, Y.; Chen, X.; Wu, Z.; Zheng, H.; Zhang, Y. Gain-Type Photodetector with GFET-Coupled MoS2/WSe2 Heterojunction. J. Alloys Compd. 2024, 1002, 175475. [Google Scholar] [CrossRef]
- Wei, H.; Meng, F.; Zhang, H.; Yu, W.; Li, J.; Yao, S. Novel Oxygen Vacancy-Enriched Bi2MoO6-x/MoS2 S-Scheme Heterojunction for Strengthening Photocatalytic Reduction CO2 and Efficient Degradation of Levofloxacin Hydrochloride. J. Mater. Sci. Technol. 2024, 185, 107–120. [Google Scholar] [CrossRef]
- Lv, Q.; Chen, F.; Xia, Y.; Su, W. Recent Progress in Fabrication and Physical Properties of 2D TMDC-Based Multilayered Vertical Heterostructures. Electronics 2022, 11, 2401. [Google Scholar] [CrossRef]
- Crowell, C.R.; Sarace, J.C.; Sze, S.M. Tungsten-Semiconductor Schottky Barrier Diodes. Trans. Met. Soc. AIME 1965, 233, 478. [Google Scholar]
- Choi, S.; Zeng, S.; Yang, W. Layer-Number-Dependent Work Function of MoS2 Nanoflakes. J. Korean Phys. Soc. 2014, 64, 1550–1555. [Google Scholar] [CrossRef]
- Choi, M.S.; Lee, G.; Yu, Y.; Lee, D.; Lee, S.H.; Kim, P.; Hone, J. Controlled Charge Trapping by Molybdenum Disulphide and Graphene in Ultrathin Heterostructured Memory Devices. Nat. Commun. 2014, 4, 1624. [Google Scholar] [CrossRef]
- Howell, S.L.; Jariwala, D.; Wu, C.-C.; Chen, K.-S.; Sangwan, V.K.; Kang, J.; Marks, T.J.; Hersam, M.C.; Lauhon, L.J. Investigation of Band-Offsets at Monolayer–Multilayer MoS2 Junctions by Scanning Photocurrent Microscopy. Nano Lett. 2015, 15, 2278–2284. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, U.J.; Chung, J.; Nam, H.; Jeong, H.Y.; Han, G.H.; Kim, H.; Oh, H.M.; Lee, H.; Kim, H.; et al. Large Work Function Modulation of Monolayer MoS2 by Ambient Gases. ACS Nano 2016, 10, 6100–6107. [Google Scholar] [CrossRef] [PubMed]
- Ochedowski, O.; Marinov, K.; Scheuschner, N.; Poloczek, A.; Bussmann, B.K.; Maultzsch, J.; Schleberger, M. Effect of Contaminations and Surface Preparation on the Work Function of Single Layer MoS2. Beilstein J. Nanotechnol. 2014, 5, 291–297. [Google Scholar] [CrossRef]
- Chuang, S.; Battaglia, C.; Azcatl, A.; McDonnell, S.; Kang, J.S.; Yin, X.; Tosun, M.; Kapadia, R.; Fang, H.; Wallace, R.M. MoS2 p-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 2014, 14, 1337–1342. [Google Scholar] [CrossRef]
- Walia, S.; Balendhran, S.; Wang, Y.; Kadir, R.A.; Zoolfakar, A.S.; Atkin, P.; Ou, J.Z.; Sriram, S.; Kalantar-zadeh, K.; Bhaskaran, M. Characterization of Metal Contacts for Two-Dimensional MoS2 Nanoflakes. Appl. Phys. Lett. 2013, 103, 232105. [Google Scholar] [CrossRef]
- Dillon, J.A., Jr.; Farnsworth, H.E. Work Function and Sorption Properties of Silicon Crystals. J. Appl. Phys. 1958, 29, 1195–1202. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, Y.; Chen, H.; Xu, N.; Deng, S. Enhanced Performance of a Monolayer MoS2/WSe2 Heterojunction as a Photoelectrochemical Cathode. Nano-Micro Lett. 2018, 10, 60. [Google Scholar] [CrossRef]
- Zhong, H.; Quhe, R.; Wang, Y.; Ni, Z.; Ye, M.; Song, Z.; Pan, Y.; Yang, J.; Yang, L.; Lei, M. Interfacial properties of monolayer and bilayer MoS2 contacts with metals: Beyond the energy band calculations. Sci. Rep. 2016, 6, 21786. [Google Scholar] [CrossRef] [PubMed]
- Hu, C. Modern Semiconductor Devices for Integrated Circuits; Prentice Hall: Upper Saddle River, NJ, USA, 2010. [Google Scholar]
- Kittel, C. Introduction to Solid State Physics, 8th ed.; Wiley: Hoboken, NJ, USA, 2021. [Google Scholar]
- Politano, G.G.; Castriota, M.; De Santo, M.P.; Pipita, M.M.; Desiderio, G.; Vena, C.; Versace, C. Variable angle spectroscopic ellipsometry characterization of spin-coated MoS2 films. Vacuum 2021, 189, 110232. [Google Scholar] [CrossRef]
- Mondal, N.; Azam, N.; Gartstein, Y.N.; Mahjouri-Samani, M.; Malko, A.V. Photoexcitation Dynamics and Long-Lived Excitons in Strain-Engineered Transition Metal Dichalcogenides. Adv. Mater. 2022, 34, 2110568. [Google Scholar] [CrossRef]
- Eroglu, Z.E.; Comegys, O.; Quintanar, L.S.; Azam, N.; Elafandi, S.; Mahjouri-Samani, M.; Boulesbaa, A. Ultrafast Dynamics of Exciton Formation and Decay in Two-Dimensional Tungsten Disulfide (2D-WS2) Monolayers. Phys. Chem. Chem. Phys. 2020, 22, 17385–17393. [Google Scholar] [CrossRef]
- Dharmalingam, K.; Bojarajan, A.K.; Gopal, R.; Thangavel, E.; Burhan Al Omari, S.A.; Sangaraju, S. Direct Z-scheme heterojunction impregnated MoS2–NiO–CuO nanohybrid for efficient photocatalyst and dye-sensitized solar cell. Sci. Rep. 2024, 14, 14518. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez-Angeles, W.L.; González-Reynoso, O.; Carbajal-Arizaga, G.G.; García-Ramírez, M.A. Electronic Barriers Behavioral Analysis of a Schottky Diode Structure Featuring Two-Dimensional MoS2. Electronics 2024, 13, 4008. https://doi.org/10.3390/electronics13204008
Martínez-Angeles WL, González-Reynoso O, Carbajal-Arizaga GG, García-Ramírez MA. Electronic Barriers Behavioral Analysis of a Schottky Diode Structure Featuring Two-Dimensional MoS2. Electronics. 2024; 13(20):4008. https://doi.org/10.3390/electronics13204008
Chicago/Turabian StyleMartínez-Angeles, Wendy Liliana, Orfil González-Reynoso, Gregorio Guadalupe Carbajal-Arizaga, and Mario Alberto García-Ramírez. 2024. "Electronic Barriers Behavioral Analysis of a Schottky Diode Structure Featuring Two-Dimensional MoS2" Electronics 13, no. 20: 4008. https://doi.org/10.3390/electronics13204008
APA StyleMartínez-Angeles, W. L., González-Reynoso, O., Carbajal-Arizaga, G. G., & García-Ramírez, M. A. (2024). Electronic Barriers Behavioral Analysis of a Schottky Diode Structure Featuring Two-Dimensional MoS2. Electronics, 13(20), 4008. https://doi.org/10.3390/electronics13204008