A Tunable Microstrip-to-Waveguide Transition for Emergency Satellite Communication Systems
Abstract
:1. Introduction
2. Transition Design
3. Experiment Results and Discussion
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alagöz, F.; Gür, G. Energy efficiency and satellite networking: A holistic overview. Proc. IEEE 2011, 99, 1954. [Google Scholar] [CrossRef]
- Darwish, T.; Kurt, G.K.; Yanikomeroglu, H.; Bellemare, M.; Lamontagne, G. LEO satellites in 5G and beyond networks: A review from a standardization perspective. IEEE Access 2022, 10, 35040. [Google Scholar] [CrossRef]
- Yuan, D.; Qin, Y.; Wu, Z.; Shen, X. An emergency positioning system fusing GEO satellite Doppler observation and INS for SOTM. IEEE Trans. Instrum. Meas. 2021, 70, 8503804. [Google Scholar] [CrossRef]
- Guo, S.; Li, G.; Zheng, J.; Ren, Q.; Wu, Y.; Shen, G.; Yue, H. Integrated navigation and communication service for LEO satellites based on BDS-3 global short message communication. IEEE Access 2023, 11, 6623. [Google Scholar] [CrossRef]
- Leyva-Mayorga, I.; Soret, B.; Röper, M.; Wübben, D.; Matthiesen, B.; Dekorsy, A.; Popovski, P. Leo small-satellite constellations for 5G and beyond-5G communications. IEEE Access 2020, 8, 184955. [Google Scholar] [CrossRef]
- Tang, X.; Zang, Y.; Li, X.; Xu, C. A metamaterial bandpass filter with end-fire coaxial coupling. Electronics 2024, 13, 3158. [Google Scholar] [CrossRef]
- Li, S.; Yao, Y.; Cheng, X.; Yu, J. Design of a dual-band filter based on the band gap waveguide. Electronics 2024, 13, 3982. [Google Scholar] [CrossRef]
- Yang, L.; Zhu, X.; Gómez-García, R. High-order quasi-elliptic-type wideband bandpass filter with ultrabroad input-reflectionless stopband range. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 655. [Google Scholar] [CrossRef]
- Rahmat-Samii, Y.; Densmore, A.C. Technology trends and challenges of antennas for satellite communication systems. IEEE Trans. Antennas Propag. 2015, 63, 1191–1204. [Google Scholar] [CrossRef]
- Yang, Z.; Browning, K.C.; Warnick, K.F. High-efficiency stacked shorted annular patch antenna feed for Ku-band satellite communications. IEEE Trans. Antennas Propag. 2016, 64, 2568. [Google Scholar] [CrossRef]
- Montori, S.; Cacciamani, F.; Gatti, R.V.; Sorrentino, R.; Arista, G.; Tienda, C.; Encinar, J.A.; Toso, G. A transportable reflectarray antenna for satellite Ku-band emergency communications. IEEE Trans. Antennas Propag. 2015, 63, 1393. [Google Scholar] [CrossRef]
- Topak, E.; Hasch, J.; Zwick, T. Compact topside millimeter-wave waveguide-to-microstrip transitions. IEEE Microw. Wirel. Compon. Lett. 2013, 23, 641. [Google Scholar] [CrossRef]
- Kim, J.; Choe, W.; Jeong, J. Submillimeter-wave waveguide-to-microstrip transitions for wide circuits/wafers. IEEE Trans. Terahertz Sci. Technol. 2017, 7, 440. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, J.; Wang, W. Wideband transition from microstrip line-to-empty substrate-integrated waveguide without sharp dielectric taper. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 20. [Google Scholar] [CrossRef]
- Xu, Z.; Xu, J.; Qian, C. Novel In-line microstrip-to-waveguide transition based on E-plane probe T-junction structure. IEEE Microw. Wirel. Compon. Lett. 2021, 31, 1051. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, Y.; Li, Y.; Zhu, H.; Xiao, F.; Yan, B.; Xu, R. Millimeter-wave waveguide-to-microstrip inline transition using a wedge-waveguide iris. IEEE Trans. Microw. Theory Tech. 2022, 70, 1087. [Google Scholar] [CrossRef]
- Yuan, B.; Wu, P.; Yu, Z.; Hao, C. Wideband end-wall transition from microstrip to waveguide with via-less choke structure for terahertz application. IEEE Trans. Terahertz Sci. Technol. 2022, 12, 317. [Google Scholar] [CrossRef]
- Lou, Y.; Chan, C.H.; Xue, Q. An in-line waveguide-to-microstrip transition using radial-shaped probe. IEEE Microw. Wirel. Compon. Lett. 2008, 18, 311. [Google Scholar] [CrossRef]
- Molaei, B.; Khaleghi, A. A novel wideband microstrip line to ridge gap waveguide transition using defected ground slot. IEEE Microw. Wirel. Compon. Lett. 2015, 25, 91. [Google Scholar] [CrossRef]
- Piekarz, I.; Sorocki, J.; Delmonte, N.; Silvestri, L.; Marconi, S.; Alaimo, G.; Auricchio, F.; Bozzi, M. Wideband microstrip to 3-D-printed air-filled waveguide transition using a radiation probe. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 1179. [Google Scholar] [CrossRef]
- Yu, L.; Quan, X.; Chi, H.C. A broadband waveguide-to-microstrip transition/power splitter using finline arrays. IEEE Microw. Wirel. Compon. Lett. 2007, 17, 310. [Google Scholar]
- Huang, X.; Wu, K.L. A broadband U-slot coupled microstrip-to-waveguide transition. IEEE Trans. Microw. Theory Tech. 2012, 60, 1210. [Google Scholar] [CrossRef]
- Ren, Y.H.; Li, K.; Wang, F.W.; Gao, B.J.; Wu, H.D. A broadband magnetic coupling microstrip to waveguide transition using complementary split ring resonators. IEEE Access 2019, 7, 17347. [Google Scholar] [CrossRef]
- Hafeez-Ur-Rehman; Song, H., II; Park, S.; Jang, J.H. Broadband partially covered microstrip-to-waveguide transition with enhanced radiation suppression for millimeter-wave transmission. IEEE Microw. Wirel. Compon. Lett. 2024, 34, 367. [Google Scholar] [CrossRef]
- Liu, Z.; Yao, Y.; Liu, Z.; Li, Q.; Cheng, X. Sub-THz Inline transition from microstrip line to waveguide for large-sized MMICs. IEEE Trans. Comp. Packag. Manufact. Technol. 2024, 14, 1474. [Google Scholar] [CrossRef]
- Oh, H.S.; Yeom, K.W. A full Ku-band reduced-height waveguide-to-microstrip transition with a short transition length. IEEE Trans. Microw. Theory Tech. 2010, 58, 2456. [Google Scholar] [CrossRef]
- Gholami, M.; Yagoub MC, E. Integrated microstrip-to-waveguide transition with microstrip directional coupler. IEEE Microw. Wirel. Compon. Lett. 2018, 28, 389. [Google Scholar] [CrossRef]
- Choi, S.T.; Yang, K.S.; Tokuda, K.; Kim, Y.H. A V-band planar narrow bandpass filter using a new type integrated waveguide transition. IEEE Microw. Wirel. Compon. Lett. 2004, 14, 545. [Google Scholar] [CrossRef]
- Kloke, K.H.; Joubert, J.; Odendaal, J.W. Coaxial end-launched and microstrip to partial H-plane waveguide transitions. IEEE Trans. Microw. Theory Tech. 2015, 63, 3103. [Google Scholar] [CrossRef]
- Dai, X. An integrated millimeter-wave broadband microstrip-to-waveguide vertical transition suitable for multilayer planar circuits. IEEE Microw. Wirel. Compon. Lett. 2016, 26, 897. [Google Scholar] [CrossRef]
- Arnieri, E.; Greco, F.; Boccia, L.; Amendola, G. Vertical waveguide-to-microstrip self-diplexing transition for dual-band applications. IEEE Microw. Wirel. Compon. Lett. 2022, 32, 1407. [Google Scholar] [CrossRef]
- Wong, S.W.; Deng, F.; Wu, Y.M.; Lin, J.Y.; Zhu, L.; Chu, Q.X.; Yang, Y. Individually frequency tunable dual- and triple-band filters in a single cavity. IEEE Access 2017, 5, 11615. [Google Scholar] [CrossRef]
- Sanchez-Olivares, P.; Masa-Campos, J.L. Mechanically reconfigurable conformal array antenna fed by radial waveguide divider with tuning screws. IEEE Trans. Antennas Propag. 2017, 65, 4886. [Google Scholar] [CrossRef]
- Polo-López, L.; Luis Masa-Campos, J.; Muriel-Barrado, A.T.; Sanchez-Olivares, P.; Garcia-Marin, E.; Córcoles, J.; Ruiz-Cruz, J.A. Mechanically reconfigurable linear phased array antenna based on single-block waveguide reflective phase shifters with tuning screws. IEEE Access 2020, 8, 113487. [Google Scholar] [CrossRef]
- Pozar, D.M. Microwave Engineering, 3rd ed.; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- ANSYS HFSS [Online]. 2018. Available online: https://www.ansys.com/products/electronics/ansys-hfss (accessed on 4 September 2022).
Parameter | Value (mm) | Parameter | Value (mm) |
---|---|---|---|
a1 | 11.8 | g2 | 3.2 |
b1 | 4 | a3 | 15.8 |
h1 | 7.5 | b3 | 7.9 |
m1 | 3.56 | h3 | 7.8 |
g1 | 3.8 | g3 | 0.67 |
g4 | 1.14 | l0 | 1.5 |
w1 | 0.3 | l1b | 0.84 |
w2 | 0.34 | w4 | 0.4 |
l2 | 1.24 | l4 | 1.8 |
a2 | 13.4 | w0 | 0.42 |
b2 | 7.2 | l1a | 1.8 |
h2 | 4.5 | w3 | 1.4 |
m2 | 3.56 | l3 | 0.85 |
m3 | 5.18 | r | 0.75 |
w | 2.3 | re | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Y.; Gao, D.; Tang, X. A Tunable Microstrip-to-Waveguide Transition for Emergency Satellite Communication Systems. Electronics 2024, 13, 4370. https://doi.org/10.3390/electronics13224370
Xiong Y, Gao D, Tang X. A Tunable Microstrip-to-Waveguide Transition for Emergency Satellite Communication Systems. Electronics. 2024; 13(22):4370. https://doi.org/10.3390/electronics13224370
Chicago/Turabian StyleXiong, Ying, Dawei Gao, and Xianfeng Tang. 2024. "A Tunable Microstrip-to-Waveguide Transition for Emergency Satellite Communication Systems" Electronics 13, no. 22: 4370. https://doi.org/10.3390/electronics13224370
APA StyleXiong, Y., Gao, D., & Tang, X. (2024). A Tunable Microstrip-to-Waveguide Transition for Emergency Satellite Communication Systems. Electronics, 13(22), 4370. https://doi.org/10.3390/electronics13224370