Integrated AI Medical Emergency Diagnostics Advising System
Abstract
:1. Introduction
1.1. Uncertainty in Medical Diagnostics
1.2. AI for Medical Diagnostics
1.3. The Structure of This Paper
2. Diagnostic Challenges in Emergency Medicine
Emergency Diagnostics Under Stress and Time and Resources Constraints
3. The Vision
3.1. A Decision-Support System
3.2. User Interface and Communication Platform
3.3. Training, Fine-Tuning, and Integration of the Existing AI Solutions
4. High-Level Design
4.1. An LLM Solution for Medical Emergency Decision-Support System
4.1.1. Medical Diagnosis and Treatment
4.1.2. Interpretation of Medical Images
4.1.3. Transfer Learning in Emergency Medicine Domain
4.1.4. Human-Like Interaction with Medical Staff
4.1.5. Data Management
4.2. Training from Scratch vs. Fine-Tuning
4.3. Fine-Tuning Methods
5. Working Prototype
5.1. Design of the Prototype
- Business Layer: The business layer contains rules, logic, and services for providing medical emergency decision support using the capabilities of LLMs.
- Presentation Layer: The presentation layer houses the user interface including speech-to-text and translation capabilities for interaction with medical staff.
- Data Access Layer: The data layer manages the interaction with the database to maintain data related to each case and corresponding responses from LLMs.
- Medical advice
- Image interpretation
- User interface
- Data warehouse
5.2. Medical Advice
5.3. Image Interpretation
5.4. User Interface
5.5. Data-Warehousing
6. Assessment of the Prototype
6.1. Medical Assessment
6.2. Comparison with Other Solutions
7. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lewis, T.L.; Wyatt, J.C. mHealth and mobile medical apps: A framework to assess risk and promote safer use. J. Med. Internet Res. 2014, 16, e210. [Google Scholar] [CrossRef] [PubMed]
- Mathews, S.C.; McShea, M.J.; Hanley, C.L.; Ravitz, A.; Labrique, A.B.; Cohen, A.B. Digital health: A path to validation. npj Digit. Med. 2019, 2, 38. [Google Scholar] [CrossRef] [PubMed]
- Ayers, J.W.; Poliak, A.; Dredze, M.; Leas, E.C.; Zhu, Z.; Kelley, J.B.; Faix, D.J.; Goodman, A.M.; Longhurst, C.A.; Hogarth, M.; et al. Comparing physician and artificial intelligence chatbot responses to patient questions posted to a public social media forum. JAMA Intern. Med. 2023, 183, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Newman-Toker, D.E.; Peterson, S.M.; Badihian, S.; Hassoon, A.; Nassery, N.; Parizadeh, D.; Wilson, L.M.; Jia, Y.; Omron, R.; Tharmarajah, S.; et al. Diagnostic Errors in the Emergency Department: A Systematic Review [Internet]; Report No.: 22(23)-EHC043; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2022. [Google Scholar] [PubMed]
- Persson, I.; Östling, A.; Arlbrandt, M.; Söderberg, J.; Becedas, D. A Machine Learning Sepsis Prediction Algorithm for Intended Intensive Care Unit Use (NAVOY Sepsis): Proof-of-Concept Study. JMIR Form Res. 2021, 5, e28000. [Google Scholar] [CrossRef]
- Kroenke, K.; Mangelsdorff, A. Common symptoms in ambulatory care: Incidence, evaluation, therapy, and outcome. Am. J. Med. 1989, 86, 262–266. [Google Scholar] [CrossRef]
- Chen, L.M.; Zheng, W.M.; Dong, X.M.; Zheng, Y.M.; Shi, W.M.; Zhang, W. Analysis of misdiagnosed or delayed-diagnosed Leprosy bacillus infection from 1990 to 2020 with a prophet time series prediction in Hubei Province, China. Medicine 2023, 102, e34714. [Google Scholar] [CrossRef]
- Abdel-Razig, S.; Stoller, J.K. Global “systemness” in medical education: A rationale and framework to assess performance. Med. Teach. 2023, 45, 1431–1435. [Google Scholar] [CrossRef] [PubMed]
- Sqalli, M.T.; Al-Thani, D. AI-supported health coaching model for patients with chronic diseases. In Proceedings of the 16th International Symposium on Wireless Communication Systems 2019, Oulu, Finland, 27–30 August 2019; pp. 452–456. [Google Scholar]
- Zhou, L. A rapid, accurate and machine-agnostic segmentation and quantification method for CT-Based COVID-19 diagnosis. IEEE Trans. Med. Imaging 2020, 39, 2638–2652. [Google Scholar] [CrossRef]
- Delen, D.; Walker, G.; Kadam, A. Predicting breast cancer survivability: A comparison of three data mining methods. Artif. Intell. Med. 2005, 34, 113–127. [Google Scholar] [CrossRef]
- Dahm, M.R.; Cattanach, W.; Williams, M.; Basseal, J.M.; Gleason, K.; Crock, C. Communication of Diagnostic Uncertainty in Primary Care and Its Impact on Patient Experience: An Integrative Systematic Review. J. Gen. Intern. Med. 2023, 38, 738–754. [Google Scholar] [CrossRef]
- Rhodes, K.V.; Pollock, D.A. The future of emergency medicine public health research. Emerg. Med. Clin. N. Am. 2006, 24, 1053–1073. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mostafa, R.; El-Atawi, K. Strategies to Measure and Improve Emergency Department Performance: A Review. Cureus 2024, 16, e52879. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sørup, C.M.; Jacobsen, P.; Forberg, J.L. Evaluation of emergency department performance—A systematic review on recommended performance and quality-in-care measures. Scand. J. Trauma Resusc. Emerg. Med. 2013, 21, 62. [Google Scholar] [CrossRef] [PubMed]
- Horeczko, T.; Green, J.P.; Panacek, E. Epidemiology of the Systemic Inflammatory Response Syndrome (SIRS) in the emergency department. West. J. Emerg. Med. 2014, 15, 329–336. [Google Scholar] [CrossRef]
- Coburn, B.; Morris, A.M.; Tomlinson, G.; Detsky, A.S. Does this adult patient with suspected bacteremia require blood cultures? JAMA 2012, 308, 502–511. [Google Scholar] [CrossRef]
- Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial intelligence in healthcare: Past, present and future. Stroke Vasc. Neurol. 2017, 2, 230–243. [Google Scholar] [CrossRef]
- Zhang, D.; Liu, X.; Shao, M.; Sun, Y.; Lian, Q.; Zhang, H. The value of artificial intelligence and imaging diagnosis in the fight against COVID-19. Pers. Ubiquitous Comput. 2023, 27, 783–792. [Google Scholar] [CrossRef]
- Ronicke, S.; Hirsch, M.C.; Türk, E.; Larionov, K.; Tientcheu, D.; Wagner, A.D. Can a decision support system accelerate rare disease diagnosis? Evaluating the potential impact of Ada DX in a retrospective study. Orphanet J. Rare Dis. 2019, 14, 69. [Google Scholar] [CrossRef]
- Singhal, K.; Tu, T.; Gottweis, J.; Sayres, R.; Wulczyn, E.; Hou, L.; Clark, K.; Pfohl, S.; Cole-Lewis, H.; Neal, D.; et al. Towards expert-level medical question answering with large language models. arXiv 2023, arXiv:2305.09617. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Topol, E.J. High-performance medicine: The convergence of human and artificial intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Sahu, N.K.; Chaturvedi, M.; Gupta, S.; Lone, H.R. Fine-tuning Large Language Models for Automated Diagnostic Screening Summaries. arXiv 2024, arXiv:2403.20145. [Google Scholar]
- Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language models are few-shot learners. arXiv 2020, arXiv:2005.14165. [Google Scholar]
- Laumer, S.; Maier, C.; Gubler, F.T. Chatbot acceptance in healthcare: Explaining user adoption of conversational agents for disease diagnosis. In Proceedings of the 27th European Conference on Information Systems (ECIS), Stockholm & Uppsala, Sweden, 8–14 June 2019. [Google Scholar]
- Xie, Q.; Liu, Z.; Yuille, A.; Tu, Z. Self-training with noisy student improves ImageNet classification. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 10687–10698. [Google Scholar]
- Rittinghouse, J.W.; Ransome, J.F. Cloud Computing: Implementation, Management, and Security; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Kaplan, J.; McCandlish, S.; Henighan, T.; Brown, T.B.; Chess, B.; Child, R.; Gray, S.; Radford, A.; Wu, J.; Amodei, D. Scaling laws for neural language models. arXiv 2020, arXiv:2001.08361. [Google Scholar]
- Radford, A.; Wu, J.; Child, R.; Luan, D.; Amodei, D.; Sutskever, I. Language models are unsupervised multitask learners. OpenAI blog 2019, 1, 9. [Google Scholar]
- Peters, M.E.; Ruder, S.; Smith, N.A. To Tune or Not to Tune? Adapting Pretrained Representations to Diverse Tasks. arXiv 2019, arXiv:1903.05987. [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the NAACL-HLT, Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186. [Google Scholar]
- Rebuffi, S.A.; Bilen, H.; Vedaldi, A. Learning multiple visual domains with residual adapters. Adv. Neural Inf. Process. Syst. 2017, 30, 506–516. [Google Scholar]
- Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 2020, 21, 1–67. [Google Scholar]
- Li, X.L.; Liang, P. Prefix-Tuning: Optimizing Continuous Prompts for Generation. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics, Bangkok, Thailand, 1–6 August 2021; pp. 4582–4597. [Google Scholar]
- Aleksandra, S.; Robert, K.; Klaudia, K.; Dawid, L.; Mariusz, S. Artificial Intelligence in Optimizing the Functioning of Emergency Departments; a Systematic Review of Current Solutions. Arch. Acad. Emerg. Med. 2024, 12, e22. [Google Scholar]
- E Annis, I.; Jordan, R.; Thomas, K.C. Quickly identifying people at risk of opioid use disorder in emergency departments: Trade-offs between a machine learning approach and a simple EHR flag strategy. BMJ Open 2022, 12, e059414. [Google Scholar] [CrossRef]
- Casano, N.; Santini, S.J.; Vittorini, P.; Sinatti, G.; Carducci, P.; Mastroianni, C.M.; Ciardi, M.R.; Pasculli, P.; Petrucci, E.; Marinangeli, F.; et al. Application of machine learning approach in emergency department to support clinical decision making for SARS-CoV-2 infected patients. J. Integr. Bioinform. 2023, 20, 20220047. [Google Scholar] [CrossRef] [PubMed]
- Mueller, B.; Street, W.N.; Carnahan, R.M.; Lee, S. Evaluating the performance of machine learning methods for risk estimation of delirium in patients hospitalized from the emergency department. Acta Psychiatr. Scand. 2023, 147, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Churpek, M.M.; Adhikari, R.; Edelson, D.P. The value of vital sign trends for detecting clinical deterioration on the wards. Resuscitation 2016, 102, 1–5. [Google Scholar] [CrossRef]
- Desautels, T.; Calvert, J.; Hoffman, J.; Jay, M.; Kerem, Y.; Shieh, L.; Shimabukuro, D.; Chettipally, U.; Feldman, M.D.; Barton, C.; et al. Prediction of Sepsis in the Intensive Care Unit with Minimal Electronic Health Record Data: A Machine Learning Approach. JMIR Public Health Surveill. 2016, 4, e28. [Google Scholar] [CrossRef]
- A Goldstein, B.; Navar, A.M.; Pencina, M.J.; A Ioannidis, J.P. Opportunities and challenges in developing risk prediction models with electronic health records data: A systematic review. J. Am. Med. Inform. Assoc. 2017, 24, 198–208. [Google Scholar] [CrossRef]
- Iqbal, S.; Altaf, W.; Aslam, M.; Mahmood, W.; Khan, M.U.G. Application of intelligent agents in health-care. Artif. Intell. Rev. 2016, 46, 83–112. [Google Scholar] [CrossRef]
- El-Rashidy, N.; Abuhmed, T.; Alarabi, L.; El-Bakry, H.M.; Abdelrazek, S.; Ali, F.; El-Sappagh, S. Sepsis prediction in intensive care unit based on genetic feature optimization and stacked deep ensemble learning. Neural Comput. Appl. 2022, 34, 3603–3632. [Google Scholar] [CrossRef]
Diagnostic Responses | ChatGPT | Gemini | Claude |
---|---|---|---|
Correct Responses | 209 | 190 | 216 |
Wrong Responses/Need Modifications | 91 | 110 | 84 |
Accuracy | 69.66% | 63.33% | 72.00% |
Feature | ChatGPT | Gemini | Claude |
---|---|---|---|
Diagnostic | |||
Accuracy | |||
Treatment advice | |||
Imaging | |||
Advice explanation | |||
Urgency detection | |||
Alternative diagnosis | |||
Performance | |||
User friendly | |||
Text entry | |||
Voice entry | |||
Output convenience |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aityan, S.K.; Mosaddegh, A.; Herrero, R.; Inchingolo, F.; Nguyen, K.C.D.; Balzanelli, M.; Lazzaro, R.; Iacovazzo, N.; Cefalo, A.; Carriero, L.; et al. Integrated AI Medical Emergency Diagnostics Advising System. Electronics 2024, 13, 4389. https://doi.org/10.3390/electronics13224389
Aityan SK, Mosaddegh A, Herrero R, Inchingolo F, Nguyen KCD, Balzanelli M, Lazzaro R, Iacovazzo N, Cefalo A, Carriero L, et al. Integrated AI Medical Emergency Diagnostics Advising System. Electronics. 2024; 13(22):4389. https://doi.org/10.3390/electronics13224389
Chicago/Turabian StyleAityan, Sergey K., Abdolreza Mosaddegh, Rolando Herrero, Francesco Inchingolo, Kieu C. D. Nguyen, Mario Balzanelli, Rita Lazzaro, Nicola Iacovazzo, Angelo Cefalo, Lucia Carriero, and et al. 2024. "Integrated AI Medical Emergency Diagnostics Advising System" Electronics 13, no. 22: 4389. https://doi.org/10.3390/electronics13224389
APA StyleAityan, S. K., Mosaddegh, A., Herrero, R., Inchingolo, F., Nguyen, K. C. D., Balzanelli, M., Lazzaro, R., Iacovazzo, N., Cefalo, A., Carriero, L., Mersini, M., Legramante, J. M., Minieri, M., Santacroce, L., & Gargiulo Isacco, C. (2024). Integrated AI Medical Emergency Diagnostics Advising System. Electronics, 13(22), 4389. https://doi.org/10.3390/electronics13224389